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AB&rRACT 

Various existing mathematical methods of functional optimization 

and optimization criteria were examined for application to the ship 

design problem. Based on this study, the Exponential Random Search 

technique in conjunction with 11Multiple Parameter Weighting Criteria" 

were used in a sample design study of a cargo ship. Rasul.ts of this 

stuccy show that this approach to the ship design problem: 

(1) yields better results than any .other method available 

at the present time; 

(2) arrives at a solution in less time than current methods; 

(3) is more versatile than any other method available; 

(4) performs the optimization more correctly because it does 

not neglect any of the features of the problem of 

optimizing a function of several variables. 

The demonstrated flexibility, versatility, and efficiency of the 

chosen method constitute in the author's opinion, a powerful tool in 

the preliminary design of ships. 
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INTRODUCTION 

The present state of the art in the ship design optimization problem 

is still of the "brute force" type. Some basic parameters affecting the 

size of the ship are chosen to be varied over a range in finite step 

sizes. Naturally, both the parameters and the variation range of their 

values are based on experience. The result is a multidimensional matrix 

thut grows very fast, since it is u function of the number of variables, 

the step size, and the range chosen. 

The specifications of ship requirements such as: speed, payload, 

endurance, etc., generally result in upper and lower limits on the 

various ship hull parameters such as length, beam, depth cp, c n ' etc. 

The designer has to select the best combination of these parameters to 

satisfy a set criterion such as minimum initial cost or minimum overall 

cost including operational costs. 

Therefore, the designer is faced now with the problem of evaluating 

the cost criterion as a function of the parameters 

F = f (L,B,H,D,Cp,C ~ •••• ) (1) 

subject to constraints resulting from various interrelations among the 

variables such as: 

(pl (L,B,H) = 0 
(2) 

1'.1'2 (B,Cp ••.• ) = 0 
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and also subject to some boundary conditions resulting from rules, 

regulation, and past experience. Previous attempts (1) to find the opti

mum combination of these parameters were cumbersom and nan elegant. 

For seyeral reasons, they may not necessarily yield an optimum at all • 

First, the method might solve for a relative minimum and not for aa 

absolllte one, since the selection of the search area might .. exclude the 

absolute extremum. Second, the probabil.ity density i'unctian of the 

search is uniform, i.e. it acts like a pure random search with a 

rather low search efficiency. 

For these reascns, the present effort attacks the problem 

first of all as a general optimization of a f'unction, (Eq. 1), 

subject to constraints and boundary conditions . Several fields of 

science, such as automatic controls, operations research, design of 

experiments, to name a few, have came up with various methods coupled 

to some criteria, for functional optimization. This iB.vestigatian 

examines the various mathematical techniques developed in some of 

these branches of engineering and science and applies the best, _or the 

best combination of a few, to optimize the ship design. In order to 

optimize a design, we have to dec'ide on the following: 

l . Choice of the optimization technique . 

2. Choice of an optimization criterion. 

3. The mathematical model of the desiga process . 

In the first category, there are numerous methods avail.able 

that will be examined and compared for their relative merit in ge:aeral 
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and in particular concerning the ship design problem. To name a few: 

1. Closed form maximum and minimum. with Lagrange multipliers 

2. steepest ascent methods 

3. Various random search techniques 

• 4. Dynamic programming • 

In the second category, the fol.lowing criteria wil.l be examined: 

a. The sum RMS error of al.l independent variables 

b. Multiple parameter weighting criteria 

c . Max-Ranking criteria. 

These are mathematical criteria in use in other fields that have to be 

examined to see if they have meaning in terms of the ship design 

problem. 

The third category pertains to the various relationships 
~ . 

I 

particular to ships involving consideration in the fields of ship 

.. resistance, powering, structural weight, machinery weight, rules, 

regulations, etc. 

There are basic differences between the ship design optimization 

problem and the other fields where these techniques have been applied. 

The differences are significant enough to cast doubt on whether some 

of the techniques are applicable at al.l. For example, let us compare 

the design optimization problem to an automatic control optimization 

problem: 

1. The objective of' a control optimization is to minimize the 

• motion of the vehicle to which the control surface is attached • 

3 



The vehicle is subject to continuous disturbances as inputs. On the other 

hand, the design process is not subject to a continuous change in inputs 

once a choice of parameters is made. 

2. The control problem is a time-varying process, while ship design 

is a stationary process , 

3. The control problem must be approached from a statistical point 

of view, while the design problem requires deterministic results • 

4. Perhaps the major difference is the fact that in the control 

optimization, the standard of performance is assumed as fixed in the 

beginning. This standard of performance may be maximum allowable 

acceleration, velocity, or displacement. In the design case the standard 

of performance, which is minimum cost, is not known at the start; it bas 

to be found by solving the problem, since it is the end result. 

As we shall later see, this last difference eliminates the appli

cation, to the ship design problem, of the kind of optimization criteria 

used in the control problem. Other fields, such as operations research, 

have developed the so-called "dynamic programming" for performance 

optimization. Here again, there are some basic differences between the 

particular problems that this method was developed for and the ship 

design problem. Various aspects of the dynamic programming, closed form 

maxima and minima, as well as the steepest ascent techniques, are dis

cussed in Appendix A. On the basis of the examination of each of these 

techniques, they were discarded and the exponential random search 

technique was chosen as most appropriate for the ship design process. 

This is~discussed in the next section. 
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RANDOM SEARCH TF.cHNIQUES 

A search of the literature reveals that most of the formal methods 

proposed for finding the maxim\Dll or minim\Dll of a function are really 

useful only in the case of particularly simple functions. All of the 

methods are sensitive to a lack of continuity in the function or its 

derivatives, or to noise-type variations in the evaluation of the 

function. To use these methods for general problems, they must be 

combined with some sort of search procedure. 

Al.though random search techniques are not new, their useful 

application to engineering problems is quite recent. Karnopp (3J , 

in his doctoral thesis in 1961, pointed out some of the advantages in 

employing random search techniques as opposed to purely deterministic 

methods. Gall r 2 J , in 1964, looked into utilizing various random 

search techniques for controlling a submarine in a random sea. Since 

as it was pointed previously, the design problem is different in its 

nature from a control problem, a basic re-evaluation of the optimi

zation method has to be performed with the design problem in mind. 

All search techniques are random, but some are more random than 

others. Even the most determini~tic method can be classified as 

random with the randomness reduced to a minim\Dll. Therefore, we have 

two extremes--on the one side, the purely random techniques and on 

the other, the purely deterministic ones. The notion that a proba

bility of unity implies certainty and a probability of zero implies 

5 



impossibility helps describe a deterministic technique. Deterministic 

schemes assume that the probability that a certain value of a function 

is the minimum is unity and that the probability that any other value 

of the function is the minimum is zero. In the case o'f the pure 

random search, the probability that the (n + l)st trial point calculated 

will result in a lower value of the function being investigated is 

the same as the probability that the nth trial point results in a 

lower value of the function. That is to say, the probability density 

f\Ulction of a pure random search is constant as shown in Fig. 3, while 

the probability density f\Ulction of a deterministic procedure would be 

a spike. -
A pure random search is a powerful but not necessarily efficient 

procedure. It is power:ful because simply by increasing the number o'f 

trial points calculated by the procedure, the probability that the 

procedure will calculate a trial point close to the precise location 

of the minimum value of the fWlction, Fmin' increases. But for this 

very reason, final convergence of a pure random search may be quite 

slow. That is, its "efficiency" is low. Hence, increasing the 

randomness of a search technique decreases its "efficiency". This is 

shown diagramatically in Fig. 1. 

The concept of randomness is related to the concept of univer

sality. That is to say, the more random a search procedure is, the 
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greater is the number of kinds of functions to which that procedure 

is applicable. Therefore, when one does not know too much about a 

function which is to be searched, one wants initially a fairly 

universal method. As one learns more about the function being ex

amined through actual application of a search technique, it would 

be desirable to be able to reduce the randomness of the search pro

cedure so that it becomes more efficient. 

If we plot the various search methods discussed in the 

introduction along the abscissa of Fig. 1, we see, for example, 

that Dynamic Programming is the most 11 efficient", and hence the 

least universal of the methods listed. The degree of universality 

of most of the methods cannot be adjusted, and they fall at fixed 

locations on this diagram. Only with the Exponential Random Search 

suggested by Gall can the degree of randomness, and hence universal

ity, be adjusted. Thus, the user can change the randomness of the 

procedure as more is learned about the function from that shown in 

Fig. 3 to that of Fig. 4 to that of a strictly deterministic pro

cedure. Hence, in Fig. 1, the Exponential Random Search extends 

across the entire abscissa. It is this feature of this technique 

that makes it so attractive. 

There is a question with the Exponential Random Search procedure 

as to how much the probability density f'unction of the random search 

should be influenced by the results of past trials. This question is 
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a very important one because it differentiates two major classes of 

problems. One class of problems {which is probably the most camnon one), 

is where the function to be optimized can be evaluated in a matter of milli-

seconds on a high-speed digital computer, and the other class of problems 

is where the function's evaluation is very cuipbersane because of the sophi-

sticated, interdependent constraints and boundary conditions to which the 

function is subject. 

In the case that we are faced with a problem of the first class, it 

will be more efficient to try a new point instead of setting up a sophi-

sticated method to evaluate and utilize all the information from the past 

trials. In the second kind of problem, because of the large amount of 

time invol.ved in evaluation of the function, it will be more efficient 

to utilize all information resulting from past trials and project ahead 

to help in choosing the next trial point. 

In contrast to the various methods s-yggested by Karnopp (3 J , the. 

search should have built-in tests for convergence and some self-opti

mizing :features. Gall [2] suggested the exponential search which will 

be examined here and compared with some other functions that might 

give results similar in character, but with varying efficiency depend-

ing on the application. 

In order to be able to analyze more rigorously the merits of one 

form of random search against another, it will be best to choose a 

simple function, for example, Fig. 2. It is required that we obtain 

the minimum of the function between the limits of +Ka and -Ka• The 

:function is: 

l. 
2. 
3. 

4. 

Symmetrical about K = 0. 
Only the portion K = -Ka and K = +Ka will be considered. 
The function between K = 0 and K = +Ka is monotonically 
increasing. 
The function need not be continuous in slope. 
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A:f'ter an arbitrary selection of the initial. val.ues 1n each 

search dimension has been made, a function that will generate the further 

trial points is necessary: This tunction will contain a random :number, 

which is easily generated and is available as a library :f'unctioa in most 

computation centers. However this random number by itself is not 

sufficient since it will result in the complete random search procedure 

since its search probability density function is: 

and 

1 
fs(K) = +K -(-K ) 

a a 

f
8

(K) = 0 elsewhere 

= 
l 

2Ka 

Since the probability is the integral of the density 

(3) 

f'unction, the probability of choosing a number within +~c units of 

the actual minimum, K , is c 

P (K + ~ > K > K - ~ ) = - c c- c- c c 

(4) 

This is the least efficient random search, because any choice is equally 

probable, i.e. its probability distribution between -K and +K is a a 

constant, {see Figure (3)). 

It is necessary to transfonn this purely random search to 

another more efficient one like that shown in Figure ( 4). Gall did 
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t his for an exponential case as foll.owe: 

(5) 

where GK is the randan number between O and 1. However, one may wonder 

w~ this particular formulation vas selected and not for example: 

or 

or 
(6) 

or others. With every one of' these :f'unctions, there exists an 

associated probability density distribution, a probability of improve-

ment and a best expected step change. Although each one can be canputed 

and canpared, generalization of these results can put one on dangerous 

grounds. 

There is no way to genera1ize results obtained from one 

:t'unction to another, (here :f'unction refers to the one to be mjn1mized), 

and it is almost impossible also to classify these !'Unctions in various 

classes. Therefore, the attempt here is mere:cy to gaiD insight and to 

check whether one of equations (5) or (6) is preferable to another. 

Since we know that 

and (7) 

This probability can be transformed f'or each of the equations (6) to 

find the probability density t'unction for them. 
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It can be seen that each transformation above will give a 

function that has a varying probability density function. However, the 

only way that this probability function can be changed to give a higher 

and higher probability of improvement is to have a changing exponent as 

in equation (5). By using any of the other functions proposed in 

equation (6), only the first departure from a constant probability 

density function is achieved. The same is also achieved by a low 

powered exponent in equation (5). Therefore, it is concluded that the 

simplest way of accomplishing the objective is by use of the exponential 

random search, equation (5 ) ~ 

The transformation is done as follows: 

or 

K = a(x)m + b 

since 

and elsewhere 

also from (8b) with -1 < X < l 

K
1 

= a{-l)m + b 

~ = a{+l)m + b 

since by definitiOlll . 
p (-1 < x. < x ) 
- - . - 0 

i'x)dx 

{8a) 

(8b) 

(9) 

(10) 
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also 

also 

since 

and since; 

~rr <x) 
f(K) a-1F 
s 

[c Jl/m 
x = K-b)/a 

_; :fj.(x)dx 

'ax aJ rs (x) ~x 
rx = ax air' 

a• 2 Ka' b •Kl,' and f 8 (x) = + , 

(ll) 

(l2a) 

If the :f\m.ction F(K) is not symmetrical then the limits can be changed 

i'ran (-K
8 

~ +K
8

) to (Ka ... Kd) and the probability density i\mction 

will be 
K _ Kb ) {1-m)/ m 

( K - K a d 

which is the general form of' equation {12). 

(13) 

Using equation (13) ror the probability density function the 

* probability of improvement and the expected change step follows by 

definition: 

* . . Meaning the probability that (~ < ~ ) subject to the 
i + l. i 

condition that it is in the range o~ + K • 
- a 
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-K B 

a 

(15) 

These results from Gall are shown on Figures (5 and 6). 

So far only a one-dimensional. (n:l) search has been examined. 

Since the search in one variabl.e space is independent of the search in 

another, the Joint probability distribution is the product of the 

individual probability density :f\lnctions. This is: 

~ 
n~n 1-m)/ 

n K m 
:f (K(l) K(2) K(n)) =\ 1 1 l -K}, 

s ' •" " 2m(K -K ) K -K a d a d 

(16) 

Ago.in, the probability o:f improvement can be computed as before and 

plotted as done in Figures (7, 8) for tvo different exponents and 

several dimensions. 

The one-dimensional search (n=l) is also plotted since it 

represents the maximum search efficiency. From Figures (7 and 8) it is 

evident t.bat the efficiency of search decreases rapidly as a 1\mction 

16 
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of n. An empirical relation is quoted by Gall[ 2J· 
( ) ~ (N ) 2n-l 

NC :n c l 
(17) 

where N is the number of choices and n the dimension of the search c 

space. The number of choices refers to the ones which do not fall 

outside the bounded region. 

The random search as explained here is very easily computer-

ized; it is efficient, general and fast. Without the necessity of using 

derivatives, the process behaves much like a gradient method. The ran-

dam process has the advantage of simplicity, insensitivity to discon-

tinuities in slope and has an easily adjustable parameter which can be 

changed as the search process proceeds, in order to accelerate the rate 

of convergence. The random methods that will be analyzed here can be 

tested by means of mental or mathematical experiments. Hence, it would 

be unwise to conduct extensive computational experiments. 

Its drawbacks are: 

1. It suffers from dimensionality i.e. the time that 

it takes to converge will increase very fast as a function 

of the space dimensions • 

2. In the case of the design problem, it is time 

consuming to evaluate the fUnction many many times, 

whereas this was not the case in the control problem 

studied by Gall. 
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Given a general. function, the probability of success for either 

the random search or the presently used brute force approach (Ber·. 1) 

is the ·same. However, the utilization or a systematized random search 

such as the expcmentia1 one is far superior to the "brute force" 

method. While the latter method marches through its search space at 

equal intervals and then marches through again at some finer intervals 

to converge on a minimum, the systematized random search optimizes it

self always around its best test result. This follows from the fact 

that the systematized random search does not have a uniform probability 

density :f'Unction such e.s the purely random and the "brute force" 

methods have. At first, the random search is started by a low 

exponent Equ. (13) so it encompasses a large search space with 

rela1!,_;vely low probe.lt_ility of improvement. Once it has started 

concentrating about some area, a higher exponentia1 search is invoked, 

thus increasing the probability of improvement at the expense of 

reducing the step size. 

Thl.s process of changing the exponent is continued until the 

method becomes actually a refinement rather than a search. It termin

ates itself by exceeding a preset tolerance. Thus, even though it 

starts out as a purely random search with equivalent probability of 

improvement to the equal interval step method, it rapidly improves on 

itself as the search for the optimum progresses. 

The method itself is very simple to apply. When the exponent 

equals one, the search is purely random. If the f\lncticm is ncm

symmetrical as is the case of Equ. (13), the searching funct'i.on .in 

general is: 

20 



·". 

where GK is the random number, 

~ is the best last search point, 

Kd and Ka are the limits of the search space 

and K is the new trial point. 

(18) 

For a two-dimensional case the process is repeated twice 

and for an n dimensional case n times. 



OPl'DHZATION CRl'l'EHIA 

A very important step in the optjmizntion process is a proper 

choice of the optimization criteria, aince it determines the final 

outcome of the process. While control optimization or allocation 

optimization to name only two, can utilize various performance criteria, 

the design optimization is of different nature and more limited in choice. 

Let us examine three out of a large variety of possible optimization 

criteria. 

Mean Square Error Criterion 

This criteri~n is the simplest both conceptionally and 

mathematically. The two most common and most easily determined 

statistical quantities are the mean and the variance (or mean square). 

The ~oduct xy of two random variables is a random variable which 

equals x1y J when x • y J. Although it is not usually true that the 

expectation of a product is the product of the expectations, this is 

the case when the variables are independent. 

E(xy) a E(x)E(y) x,y independent (19) 

(The proo:f can be found in any book on the subject). 

When the problem involves several variables x,y ••••• it is convenient 

to denote the expectation by a different letter. Let us say 

E(x) ·tx 
(20) 

To measure the deviation of a variable i'rom its expected value!J&., 

one introduces a quantity V defined by: 

22 
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{21) 

The expression V is called standard deviation and its square V 2 is 

culled the variance or {mean square). 

• ' I·!ultiple-Parameter Weighting Criterion 

Based on the same principal as the previous criterion, but 

with added generality, the multiple-parameter weighting criterion is 

more flexible. It allows for weighting each parameter against each 

other, thus increasing or decreasing the role of each parameter in the 

optimization process at will 

{22) 

Multiple-Parameter Max-Ranking Criteria 

This method employs a ranking array. The essential factor 

here is that each system attribut'_ which is to be considered in the 

optimization is rated against an absolute scale of desirability. An 

example of a possible ranking array for a system of 4 variables is 

given in Table I. For example, consider row 2 C{I} a l • A value 

of DE1J. = 3 is considered as desirable an end result as DEL2 • 8 or 

Desirability C{I) DELi_ DEL2 DE1J 
0 0 1 0 

Most Desirable l 3 8 0.7 

2 4 10 0.9 

Least Desirable 3 4 17 LO 

4 9 18 1.2 

TABLE l MAX-RANKING ARRAY 

23 
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The construction of this ranking array shoul.d be carried out 

with a great deal of thought. The results of the entire optimization 

study will depend upon the values selected. In order to construct 

the ranking array, the designer must have a good appreciation of the 

system capabilities and requirements. 

Once the ranking array is set up, it can be appli~d in a 

straight forward simple manner. The first step is to ~ssign values to 

each ¢(I) for any given set of system variables. This can be 

accomplished by any interpolation scheme which the designer desires to 

employ. 

As an example, let us refer back to TABLE 1. Let us suppose 

that for a given ship design the difference betwe~n the desired payload 

and the actual payload is DE11_ = 4 and the difference between the 

desired stowage factor and actual stowage factor is DEL
2 

= 9. DEL
3 

= l. 0 

and DEL4 = .4 are some other pertinent para.meters. Then linear inter-.. 

polation in TABLE l gives the following values for each C(I), 

C(l) = 2.0 

C(2) = 1.5 
C(3) = 3.0 
c(4) = 3.5 

This essentially establishes the desirability (for this 

particular case) of each of the four resulting variables. 

Two different approaches can be taken in an attempt at 

assigning an overall desirability based upon several values of the 

individual C(I)'s. 

24 



The first method defines the overall desirability as the 

average desirability of the resulting individual variables. 

particular example being considered, this givesi 

4 

Cs • * "[. C(I) • ~ (2.0 + 1.5 + 3.5) = 2,5 
X=l 

For the 

(23) 

'!his method is exactly equivalent to the multiple-parameter weighting 

criterion, whose weighting parameters are functions determined by the 

ranking array. This method has only one advantage over the weighting 

method, i.e., a methodology for determing the weighting functions. The 

principle disadvantage 1s that there is implicit weighting between the 

columns of the ranking array, The minimum value of the system desire.. 

bility (C ) based upon this averaging method would be one which produced s 

low values of C(l), C(2) and C(3) at the expense of higher values of c(4). 

A much better method is one which equates the overall system 

desirability with the value of C(I) corresponding to the least desirable 

of the resulting individual attributes of the system1 This,in effect, 

states that the system is no more desirable than its least desirable 

attribute . This method has been termed Max-P.a.nking. The Max-Ranking 

measure of system desirability (CM) is defined simply as: 

CM = C(I) max {24) 

Thus, for the example being used here, CM is 

CM = ¢(1) = 2.0; C(2) = 1.5; C(3) = 3.0; c.(4) • 3.5 

or 

CM = C(4) = 3.5 

The criterion of optimality is, that CM shouJ.d be minimized. 
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SEIECTION OF AN OI'rlMI2ATIOH CRITERION 

On the basis of an evaluation of the ship design process, it 

wo.s decided that the overall optimization criterion should be composed 

of three terms. One of these is an economic criterion and following 

Ref. (1) this has been chosen to be the sum of yearly operating coats 

plus annual depreciation and interest charges. Clearly the optimization 

process should seek to min:Lmize this cost rather than seek to achieve a 

certain predetermined level of this cost. Unfortunately, this fact 

eliminates the Max-Ranking criterion as a possible optimization criterion 

for the ship design process, since as noted in the previous section, 

the Max·Banking criterion can deal only with optimization noted 

against an absolute scale of desirability. 

The other two parts of the optimization criterion constitute 

the boundary conditions of the criterion. They are two owner's 

requirements; payload weight and payload volume (stowage factor)*. 

These two factors are compatible with the Max-Ranking criterion since 

a prescribed value of those two factors is sought in the design process. 

However, even for these two, setting up an absolute scale of desirability 

can only be done in an artificial way. 

However, because of the fact that use of the Max .. Ranking 

criterion is incanpatible with the least cost criterion, the multiple 

parameter weighting criterion was chosen as the best suited to the ship 

design problem. Following the previous discussion and equation (22) 1 

*Tbe other two owner's requirements, speed and range are assumed as 
fixed input items. 
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this criterion is: 

(26) 

where 

w1, w2, and w
3 

are weighting factors. 

DEI.SF - is the difference between the actual and required stowage :factors 

DEDolP - is the difference between the actual and required payload weight 

COST - straight line depreciation plus average intez:est, 25 year 

economic life, 2.5~ scrap value, 5~ simple interest, reduced 

to a yearly expenditure basis . A yearly :f'uel cost is then 

added to this :figure. 



THE MATHEMATICAL MODEL 

What is needed in the ship design problem is the mathematical. 

model that determines the cost (initial plus operating costs) as a 

function of the basic parameters defining the- form and size of a ship. 

These basic parameters are listed below al.ong with the major technical 

considerations and weight groups which they influence. Also listed 

are the two functional interrelationships between the displacement and 

the weight groups and between the displacement and the other basic ship 

form parameters. 

(1) Length, L • power, (W , Wf, W ) m s 

(2) Breadth, B, - stability and period of roll, (W
8

) 

where 

(3) Depth, D, - strength, (W
8

) 

( 4) Draft, H, - hydrographic restrictions 

(5) C - residuary resistance, (W , Wf) 
P m 

(p) ~ - displacement, ~ = Ws + Wm + Wf + 

6=C xC xLxBxH P m 
35 

Wm - machinery weight group 

W~ - :f'u.el weight group 

W - structure weight group s 

W - payload weight group 
p 
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Because the time required to obtnin a solution is affected 

adversely by the number of dimensions of the senrch space, it is 

essential to minimize the number of variables. One way of accomplish· 

1ng this is to canbine the ship dimensions into dimensionl.esa ratios. 

Thus the following four dimensionl.ess and one-dimensional parameters 

can replace the previous six-dimensional parameters. 

l. B/H 

2. L/D 

3. v/ 'fiL or v/'(L (cm = f(V/ fL> 
Ii.. c 

p 

5. 6. 

One of the variables D11st remain dimenaional and this was chosen to be 6.. 

But it is clear that it could also have been B or H or L, since 6. a 

LBHC C • pm The third parameter will be recognized as the Froude number 

or speed-length ratio • Since in this parameter, speed is a prescribed 

input item, an ~itial random selection of V /"'lLfixes the initial 

length selection. 

The optimization criterion c, of E<t· (26) will be a f\lnction 

of the preceding 5 variables, i.e., 

C = f (6., B/H, L/D, V/\[L, Cp) 
(27) 

To canpletely define this :function, the midship section coefficient is 

required too. Because it bas only a small influence an the final 

result, it was assumed to be a dependent variable, i.e., Cm= f(V/~L). 

(see Equation l of Appendix B). The criterion C is also subJect to two 

additional constraints. 
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l. Load line regulations require o. certain minimum f'reeboa.rd 

£or each ship as a :f'unction of L mainly, but also depending on D and CB. 

(CB = C x C ) • In this study the relatively small dependency on D and 
p m 

CB was neglected. 

2. The second constraint is a minimum stability requirement 

which is expressed in terms of mininnun acceptable GM,13- ratio. 

A question exists as to why displacement is selected as a 

basic dimension of the search space. For example, it can be argued on 

theoretical grounds that the specification of the four owner's require-

ments, i.e. speed, range, payload weight and stowage factor along with 

an initial random selection af' the four basic dimensionless pare.meters, 

B/H, L/D, v/'(L and C determine a unique value of displacement. 
p 

While this is true theoretically, practically, there is great difficulty 

in determining this value of the displacement primarily because the 

estimates of ship power require prek.nowledge of ship displacement as 

well as ship speed and the other ship dimensions and coefficients. 

For this reason, in the current work, displacement is one of the basic 

dimensions of the search space. Thus for ea.ch initial selection of 

displacement and the other four basic dimensionless parameters, plus 

the initial input of a required ship speed and range, there exists a 

unique value of payload weight and of atovagc factor. The selected 

optimization criterion then seeks to minimize the error between these 

values of payload weight and stowage factor wid the values specified by 

the owner as well as to minimize cost. In this way, the random search 

method eventually achieves compatibility amongst all of the parameters 

involved in the ship design process. 
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THE SOllJTION 

The ranges of the five baoic pnrwneters within which the random 

aearch process will conduct its search are determined as follows: 

(1) B/H, v/yr:! & Cp: The rnngea of these three parameters 

are determined by the coverage of the model resistance series used to 

determlll.e residuary resistance. If the Taylor's standard series 

(ref. 5) is used, the ranges are as follows: 

B/H - 2.25 to 3.75 

v~ - 0.5 to 2.00 

cp - o.i.a to 0.80 

These represent far broader ranges than are likely to be needed for 

most conventional ship designs. 

(2) L/D: The upper limit of this parameter is restricted 

by the minimum pe111lissable freeboa.rd specified by the U.S.C.G. !Dad 

L:llle Regulations and given 1n Equations 15, 16, 17 of Appendix B • 

(See also Eq. 14). For the current study, no lower limit was placed 

on the range of this parameter. 

(3) 6: The range of this parameter is initially selected 

arbitrarily by the designer based on his experience. If his initial 

selection of the displacement range is poor, this will be irrmediately 

evident as the random search progresses because there will be a per

sistently large error, either always positive or al~s negative 

between the required values of payload weight and stowage factor and 

the values canputed .by the program. If this happens, the displacement 
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rn.nee cnn be readily adjusted by th~ dcoigncr either upward or downward 

af~cr several trial points are generated. 

The optimization criterion C, is then evaluated starting with 

randomly selected initial values (within the ranges of values just 

cliscussed) for each of the five parameters, (B/11, L/D, v/'('L: C , 6). 
p 

Based on these initially selected values, the program carries out computa~ 

tion of the following items sequentially: 

a. The frictional resistance coefficient using the ITTC line. 

b. The residuary resistance coeff'icient using Taylor's 

Standard Series,Ref. (5). 

c. Knowing the total resistance and hence the total power 

(see Appendix B, Item c,) as well as the ship dimensions, W , W, m S 

Wf' etc. are computed. 

d. The total cubic space available. 

e. The total cost. 

f. The two constraints, stowage factor and payload weight. 

For the computation of the various weights, centers of 

eravity, stability (GM) and costs, empirical. equations and constants 

derived fran Ref. (l) and listed in Appendix B are used. These 

empirical relationship, which are not universally applicable to all 

types of ships, can be changed without affecting the general method 

which is tested here. To make the computer program completely general, 

t he empirical expressions in their algebraic form could have been read 

in to the computer as data using a Fortran compatible language ca1led 

li'Qm-iAC. This, however, was not actually done in this study. 
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Once the optimization criterion C is calculated for the initially 

selected randcm values of the five dimensions 1 the optimization procedure 

can comnence. A new randan value is generated in each search dimension, 

a new C is computed and can.pared to the previous value. Only values of 

c smaller than previous ones are used to generate further values. 

larger values are discarded. 

The procedure, thus far, results in repeated evaluations of C 

'Within the coverage of the five•dimensional space function, As 

explained in the section describing the random search technique, 

increasing the exponent of search1results in a decrease of the expected 

step length on the account of the increase of probability of improvement. 

Thus gradually, the exponent is increased, starting with n = 1 (pure 

l'Slldom search) so as to cover the whole search space at the beginning, 

to larger exponents in order to increase search efficiency. The 

search procedure is terminated after a prescribed number of good 

choices fails to produce an improvement on a preset tolerance • 
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RESULTS .Al'ID CONCillSIOUS 

In order to demonstrate the correctness of the results of the 

design subprogram developed in this study, the characteristics of the 

sample ship shown ill Ref. (1) on page 66 were reporduced by using the 

srune input parameters 6, C , V / 'fi), B/H and L/D as 1n Ref. (1) • 
p 

These results, together vith those computed in Ref. (1), are shown 

in ~IE II. As it can be seen, agreement is excellent. The slight 

difference in the cost and payload weight stems from the slightly 

hiBber horsepower which, ill turn, results in slightly higher fUel 

weight and machinery weight. This, in turn, reduces slf8htly the 

payload weight since the displacement is the same. However, all of 

these slight differences which may result from different ways of 

1 
interpolating the Tay1or's standard series are within an error of 

Having shown that the design subprogram of the optimization 

method produces accurate results, there remains to be demonstrated by 

actual calculations, that the optimization method developed in this 

study has merit canpared to current computational. as well as manual 

techniques. It is believed that the proposed method has the following 

advantages: 

(1) It searches out lover cost ship designs for a given set 

of owner's requirements • 

(2) If there is more than one lowest cost design, the method 

will locate it. 
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TABIE II 

VERIFICATION OF THE RESULTS OF 'l'l!E SHIP DESIGN PROCESS 

(1) (2) (1) (2) 
• DcGi(?'l No. Design Fran Design From Design From Design From 

3ource Random Search Ref. (1) Random Ref. (1) 
Closest to-Ref. (1) Search 

Ra.ngc ' 13000. 13000. L 509.6 509.5 

Speed 20.0 20.0 B 80.3 80.3 

Payload Bgn.33 9001.5?. H 29.3 29.3 

I SHP 16904. 16775. 
' 

S.F. 90.95 90.U4 I 
' 

Cost Points 271124 2700386 r ~ ··--
Displacement 19991 19891 WO 2214.6 2214.6 . 
c .5gr .5gr 'I ws 4668 .7 4669.0 .. p 

v/{71 .886 .886 WM 889.2 885.8 

B/H 2.74 2.74 WF 2841.2 2820.6 

L/D 10.48 10.47 Margin 300.0 300.0 

• 

.. 
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(3) It performs the necessary calculations more quickly and 

at less cost than current methods . 

(4) It is more :flexible and more versatile than any other 

method available. 

(5) As a result of :!having the canputer program written for 

a time-sharing system, the proposed method permits cOBtinuous dialogue 

between the designer and the canputer. 

( 6) By utilizing a newly developed computer language called 

FORMAC, all the empirical expressions in their algebraic form can be 

input to the program rather than part of it, thus enabling quick and 

easy changes of .•the empirical information without the necessity of 

altering the program itself. 

The first advantage is demonstrated in TABLE III which shows 

a comparison between the characteristics of two ship designs ccmputed 

by different methods, but all intended to conform to a range of 13,000 

miles, a speed of 20 knots, a payload weight of 9,000 tons and a stowage 

factor of 90. It is clear that the proposed method seeks out a design 

that conforms more closely to the owner's requirements and for less cost 

than the computational approach of Ref. (1). 

The reason :for this result is the fact that the current 

method treats the optimization problem as a five-dimensional surface, 

rather than breaking it down into five one-dimensional curves as is done 

in Ref. (1). By constructing a smooth curve through four points, small 

variations in the cost curve may have been washed out in Ref, (1). 
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TABLE III 

COMPARISON OF SHIP DESIGNS COMPUTED BY TWO METHODS 

.. Desi8Ji No • (4) (3) (4) (3) 
Cdlmputer Minim.lm Computer Minimum 
Design Cost By. Design Cost By 
:from Ref. Random :from Ref. Random 
(1) Search (1) Search 

Range 13000 13000 L 518.2 534.6 

Speed 20.0 20.0 B 80.23 77.4 

Payload 9002 
(o;iner' s 

9005.7 H 29.93 28.76 

req't.) 

SF 89.77 88.47 D 48.54 46.6 

Cost Points ~7,884 269,489 GM/B .05o4 .0510 

' ..- • ) ' • ~ I .· SHP 16,372 16,~7 . -
Displacement 20,239 19,890 WO m2 2255 

cP .585 .600 ws 4756 4715 

v/fL' .879 .865 WM 875 873 

B/H 2.680 2.692 WF 3034 ~41 

L/D l0.6eO 11.500 Misc. 300 300 
Deadwgt. 

Margin --- ---
• I 

I 
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By treating the mul.ti-dimensional surface as it really exists, emal.l 

undulations are detectable. When searching for a minimum cost ship in 

n limited range of the variables, it is obvious that the cost varia-

tions are not going to be large. Rather, the hope is to find such a 

set of ship characteristics which would be slightly better than others 

in the specified range. 

TABLE IV demonstrates the second advWltage of the proposed 

method. Since a five-dimensional surface may be multi.modal, there 

might be several combinations of ship characteristics which yield the 

same cost. A demonstration that there are at least two designs of 

quite different dimensions that are close to mini.mum cost ship.is displayed in 
TABLE IV. 

As far as the third advantage is concenied, the method proved 

to be very efficient. A normal search of 500 search points took about 

one minute on the IBM 7094 computer. 

To demonstrate the flexibility and versatility of the method, 

it vill be recalled that the criterion consists of three parts; the 

payload weight, the stowage factor and the cost, each associated with a 

particular weighting factor. In the design stage, the owner may also 

be interested in the effect of variations of the payload weight and 

stowage factor on cost and ship dimensions. The output of a random 

search for an optimum design wil.l not only yield the least cost design, 

but wil.l also disclose the effect of small changes in stowage factor and 

payload weight on cost. This flexibility is achieved vecy simp~ by 

weighting one factor more than another in the criterion. These effects 

are displayed in TABLE V. 

Advantages five and six are a result of utilizing the latest 

advances in digital computer methods, softvnre and systems. 
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TABLE IV 

TWO SHIPS WITH IDENTICAL COST 1 ----- --·~-..... 

• 

Design No. (5) (6) (5) (6) 

Ship No. 1 Ship No. ~ Ship No. 1 Ship No. Z 
-

Range 13000.0 13000.0 L 506.6 534.8 

. . B 81.1 77.0 

Speed 20.0 20.0 H 29.7 28.6 

D 48.4 46,5 

Payload 8997.58 8989.94 GM/B .054 .050 

S,F. 88.879 88.874 SHP 26755.9 16592.9 

Cost Points Z7C1787. zro539. 

Displacement 19891. 19903 WO 2229.1 2239.4 

cP 0.587 o.6o6 ws 4661.6 4700.9 

v/ {L' .889 0.865 WM 885.3 881.0 

B/H 2.731 2.692 WF 2817.6 Z791.7 

L/D 10.465 11.500 Margin 300.0 300.0 

39 



TABLE V 

THE EFFECT OF WEIGHTING FACTORS 

4 

Design No. (7) (8) (9) (lP) 

Wl 1.000 50.000 1.000 1.000 

W2 1.000 1.000 50.000 1.000 

W3 l.000 1.000 ;i..ooo 50.000 

Required Payload 9000.0 9000.0 9000.0 9000.0 

8973.5 9000.2 9051.9 8859.0 

Required Stowage 90.0 90.0 90.0 90.0 Factor 

Actual Stowage 88.26 86.77 90.~ 87.74 Factor 

Cost Points 269, 756. 7 269,364.6 zr9,374.6 267,996.8 

A 19887.6 19887.6 20379.9 19692.0 

c .584 .583 .566 .583 
p 

v/fL' .867 .867 .864 .867 

B/H 2.714 2.700 2.822 2.700 

L/D 11.419 11.500 11.441 11.500 

• 

"' 
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APPENDIX A, 

THREE METHODS OF OPTIMIZATION 

(a) Closed Form Solution 

Given a function f(x,y) where x and y are two independent variables, it 

can be shown that the necessary condition for a maximum (or mini.mum) of 

f (x,y} at x = a is that 

~=0 
ax 

(1-A) 

if this derivative exists at x = a. Similarly, f(x,y) will attain a maxi.mum 

(or mini.mum) at y = b if 

..EL = 0 
~y 

(2-A) 

and the derivative exists. The coordinates (a,b) thus satisf'Y the equa-

tions 

~ = 0 and ~ = 0 (3-A) 
ax ay 

at any point (a,b) where f(x,y) attains a maximum or mini.mum. 

In addition, the problem of design will undoubtedly C?ontain variables 

which are not independent, thus resulting in a constrained extremum. 

Let us consider the following problem: 

Given a function of several variables f(x1 , x2, x
3 

••• xn) subject to 

several constraints: 

<1'1 (~, x2, x3 x ) = 0 n 

<t>2 (xl, x2, x3 x ) n = 0 

{4-A) 

<t>n (xl, x2' x3 •.• xn) = 0 

and each variable bounded by some two values, what is the absolute extremum? 

The equivalent single requirement to the vanishing of ..a!.. and ~ simul

taneously, is the vanishing of its total differential .ax at ~ the 

maximum and mini.mum points of the function; i.e., 

_M'_ dx +~ dx +~ 
~~ l !~ 2 ax3 

dx3 ••• _!!___ 
axn 
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Equation (4-A) yields also -the following: 

aq,l 
dxl + 

aq,l 
dx2 + 

acpl 
dx3 + 

~l 
dx = 0 -

~l ~x2 ax3 axn 
n 

(5-A) 

aq,n 
dxl + 

~n 
~+ 

aq,n 
dx3 + ••• 

acpn 
dx = 0 - -

a~ ~2 ~X3 ~n 
n 

For purposes of simplicity and since by now the generality is 

obvious, let us consider that the function is only dependent on three 

variables, subject to two constraints; i.e., 

f(x,y,z) = 0 

cp
1

(x,y,z) = 0 

cp
2
(x,y,z) = 0 

Using the method developed by Lagrange, the total differential. of the 

constraints are mu1tiplied and added to the equation of the function 

to obtain: 

-+A -+A - dx+ -+A -+A - dy ( 
af a.1 aq>2 ) ( ar ac,1 a.2 ) 

ox 1 ax 2 ax !y 1 ay 2 ay 

acpl 
-+ 

(6-A) 

~z 

Now, let A
1 

and A2 be determined so that two of the parentheses in 

Equation (6-A) vanish . Then, the differential of the constraints 

multiplying the remaining parenthesis can be arbitrarily assigned and 

that parenthesis must also vanish. In other words, 

oqi1 ~l 

~x ~y 
J{x,y) = f 0 (7-A) 

aq,2 ~2 

ax ~y 

where J(x,y) is the Jacobian of x and y. 
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Thus, we must have: 

!f ~,l "'2 
-+ >-1 - + >-2 :a 0 

ax ax ax 
~f ae,l ac,2 
-+ ).1 - + ~2 - :a 0 (8-A) 
~y 'ay ~ 

~f ~l !cp2 
-+ >-1 + ).2- = 0 
~z ~z !z 

'1 (x,y,z) = 0 

'2 (x,y,z) = 0 

The result is five equations with five unknowns--x, y, z, >.1 , and 12 • 

It can be shown that there will be a number of equations corresponding 

to the number of unknowns even if the constraints contain only part of 

the number of unknowns or if there are more constraints than unknowns 

or any other limiting case. Thus far, this closed form solution of the 

general n dimensional. problem seems very promising tor the design 

problem. There are, however, a number of drawbacks that will now be 

examined. As before, for simplicity, we will restrict ourse:Lves to 

functions of one or two variables. However, the conclusions are easily 

adaptable to functions of n variables. 

1. Figure 9 shows a very general function. It is ·obvious that 

there are several maxima and minima and since we seek the absolute' 

mihima, there will have to be some testing done because calcu1us methods 

cannot seek other than relative extremes. 

2. The method described above assumes an unbounded function. 

Therefore, from Figure 9, it is obvious that after all this effort of 

extreme seeking technique, it might turn out that none of the locations 

found is the absolute minimum. 

3. The method assumes continuous functions in order to obtain 

derivatives. As seen on Figure 10, it is conceivable that the hypre

surface (surface in n dimensional space), ma.de of several well

behaved functions on their own, will still have discontinuous inter

sections. 
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Fig. 9 A General One Dimensional 
Function 

z 

y 

Fig. 10 D isconti nu ties a r1 sing from 
Intersections of Continuous Surfaces 

_____________ i _____________ _ 

f (x) 

Fig. 11 Noise Type Functional 
Variation 
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4. Even though all functions and the hypresurface will be well 

behaved, the resulting set of simultaneous equations with the Lagrange 

multipliers will be nonlinear and probably coupled. This necessitates 

resort to complicated ntanerical methods for solution. Linearization is 

not applicable in this case since we are not considering a converging 

series of a small motion problem about an equilibritan position. Linear

zing these equations would mean losing the whole significance of the 

problem. 

5. Another consideration has to be adaptability of the method to 

a digital computer which, in this case, is impossible in the normal 

computer languages since they can manipulate only numbers. This means 

that if one wanted to computerize the closed form method, 9~ of the 

solution would have to be done without the aid of a computer and the 

only task left for the computer would be routine numerical calculations 

essentially taking the place of a desk calculator; a wasteful use of a 
I 

digital computer. 

6. A recently developed language by IBM called 11Formac11 could 

overcome most of the difficulties mentioned in (5), since it enables 

symbolic solution of mathematical. problems. At first, this language 

raised the hope of programming a general optimization problem where 

both function and constraints could have been input data in a fllllctional 

form. However, the last step in the solution, i.e., the solution of the 

simultaneous nonlinear algebraic equations, eliminated this possibility 

also. 

7, The last drawback of such a method would result from having 

to evaluate such points as shown in Figure 11. They a.re obviously 

"noise"· type information which is entirely uninteresting a.s far as the 

design optimization problem is concerned . 
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(b) Steepest Ascent or Descent Opt:il!lization Technique 

The steepest ascent or descent method as summarized by Gall, 

Ref. [2], uses the following logic: 

1. Determine the partial derivatives with respect to each of 

the n dimensions at the present position which is arbitrary. This is 

usually done by calculating the value of the function whose minimum is 

sought at small increments on either side of the present position. The 

average partial derivatives through the present location can then be 

calculated for the particular dimension. This is repeated for all n 

dimensions. 

2. Determine a new location by choosing increments for each of 

the n dimensions proportional to their own partial derivatives, 

(The directions chosen for each dimension, of course, depends upon 

whether a maximum or minimum is being sought.) This particular choice 

of increments forces the new location to be in the direction of the 

steepest path which passes through the old location. 

3. Steps l and 2 are repeated until a local maxima (or minimum) 

is reached. In actuality, the search is stopped when all the partial 

derivatives are below some predetermined level, since otherwise the 

search could go on indefinitely looking for exactly zero partial 

derivatives. 

4. Repeat steps l through 3 for several starting points. This 

is necessary since each starting point can only result in the deter

mination of a single extremum. In most multidimensional problems, 

there will be several relative extrema. 

This method has several drawbacks: 

a. The partial derivatives have to exist; i.e., no discon-

tinuities are allowed • 

b. A high value of slope would indicate large increments; there-

fore, if the extreme is located at the intersection of two hypersurfaces, 

the method will oscillate back and forth. However, if the function is 

well-behaved and unimodal, this method is quite efficient. 

c. The process is time-consuming since for each trial point 2n 

additional points have to be evaluated where n is the number of 

dimensions the :£'unction depends on. 
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(c) Dynamic Programming 

In any search for optimization techniques applicable to the problem 

at hand, it is imperative that dynamic programming be considered. Its 

phenomenal reduction of dimensionality when applicable, Ref. [4], the 

resulting freedom from the form of the expressions involved, and its 

almost automatic generation of all manner of conditional optima indicate 

that some effort be expended in evaluating this technique. 

In order to apply dynamic programming, two conditions must be met: 

1. One must be able to order the decision-ma.king process in 

such a way that the state of the system after each decision can be 

described by a small number of parameters. 

2, Any decision in the sequence depends only on the present 

state of the system and not on past states (Markovian property). 

Of' course, it is always possible to get the Markovian property 

by adding more parameters. This is useful only if the resulting system 

does not violate 1. 

Can the ship design process be organized in such a way that 

conditions 1 and 2 are met? strictly speaking, this question is vacuous. 

What we really want to know is ; With our present state of knowledge of 

the interactions between the various subsystems that make up the ship 

design process and, most important, with our present state of know

ledge of our own desires, can we so order the design problem? The 

answer to this question is probably not. To get a feel for this, let 

us examine two restricted formulations of the problem for which dynamic 

programming might be a considerable aid and see what is required. 

1) Let us suppose that given the owner's requirements we some-

how determine a feasible weight , space, and moment. Let us suppose 

further that we can measure the "return" of each system by the negative 

of the cost of that system which is a function of weight, space, and 

moment of that subsystem. Then, if our int~ntion is to maximize this 

return, we have a fairly simple three-simensional dynamic program--the 

problem being to allocate tne available weight, space, and moment among 

the various subsystems in such a manner as to minimize cost. The 
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owner's requirements will enter in the minimum that each of these 

quantities can assume for each subsystem.. This formulation has two 

obvious drawbacks: 

a) It does not tell us how to get the feasibl~ solution which 
. ' I I 

if' arrived at in sane intelligent manner will probably be fairly 

close to the optimmn anyway.* 

b) Our objective in ship design is rarely to simply allocate a 

certain amollllt of money among the various components, but to 

minimize the total. 

2) Let us suppose we somehow determine a feasible combination 

of dollars, weight, space, and moment. Suppose further, that we can 

characterize each subsystem. by an "efficiency" which is a function of 

the dollars, weight, space, and moment allocated to that subsystem.. 

Suppose finally, that we can agree that the overall value of the design 

can be characterized by some function of these efficiencies, which 

function we shall wish to extremize. This can be set up as a four-

d.y n am i c program.** This formulation is also open to objection 

(a) above--how do we get feasible solution? It replaces objection 

\b) by its more basic form--can we agree on the subsystem and overall 

system "efficiencies" required, This last, of course, is not a dynamic 

programming problem; but until the answer is "yes", it is not quite 

clear how we can utilize this technique without complicating matters 

more than it is necessary. 

* Notice, if the solution offered is unfeasible, the dynamic program will 
discover it fairly quickly. It will also yield some information on how 
unfeasible it is. This opens up the possibility of an iterative pro
cedure utilizing dynamic programming to obtain the feasible (and thus 
the optimum) solution. 

** It does not mean that solving 3 and 4 dimensional dynamic programs is 
very straightforward. Full. use of the Lagrange multiplier techniques is 
one way. On the other hand, by conventional methods we would have a 
4 x N dimensional problem where N is the number of subsystems. 



APPENDIX B 

(Based largely on Ref, (1)) 

Empirical Equations, Design Caistants and Design Factors 

(A) :Empirical Equations 

These equation1:1 are the basis for all canputer results and 

are included for illustrative purpose only. These equations could 

undoubtedly be presented in varying forms with varying degrees of 

accuracy. Unless stated to the contrary, all lengths and speed/length 

ratios are based on "Length-on-Waterline" (L.W.L,). In equations where 

"Length Between Perpendiculars" (L.B.P.) is required, L.W.L. is modi

fied by a suitable Design Factor (K9). 

Eq. #1 

Eq. #2 

Eq. #3 

Used to determine optimum midship coefficient (ex) for any 

given speed/length ratio. 

ex = o.m + 0.018 (v/1/L) + 0.076 (v/ VL>2 
- 0.115 (v/\fL)3 

Used to determine fuel oil capacity (tons). This is an exact 

relationship for the amount of fuel oil (WF) required to sail 

a given distance (R) plus lo,'i, at a given speed (V). The 

equation depends on a relationship of P\lel Rate vs. Shaft 

Horsepower - see equation no . 20 (F.R. = FUel Rate) 

WF"'" 
(l.lOR) x SHP x F.R. = 0.491 x 10-3 R x SHP x F.R. 

2240 x v v 
Used to determine gross bale cubic of the ship. This curve 

applies to all dry cargo ships except where excessive sheer 

is used. This expression includes machinery space volume 
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and excludes the double bottom and peak tanks • 

G.B.C. = 0.875 [L x B x D x CB J K9 

Eq. #5. Used to approximate fuel oil capacity of the double bottan 

(WFB). This assumes LBP = K9 x lllL. This equation must be 

Eq. lf6 

Eq. #7 

modified for excessive tank top heights and different fuel 

types. 

WFB = 37 ~2 ~K9 x L) x B x (Ki; x D) x (0.69 °iiil , where 

CB= Block Coeff. at L.W.L.; factor 601t is a correction 

for, (a) structure in inner bottan, and (b) correction to 

obtain CB at the W.L. height equal to tank top height. 

F.o. stowage factor = 372. Ft3/L.T. 

WF.B = 18.55 x 10-3 [L x B x D x cBJ ~ x K9 

= 21.20 x io·3 ~.B.c. from Eq. D K6 

Approximation to outfit weight, 

_ (L x B) K91. 60 
WO - 0.15 100 

Approximation to steel weight, 

Ws = 2.107 L (B ~O~) x K9 1.19 

Eq. fl8 Approximation to 11wet11 machinery weight, 

W = 7.18 SHP o.495 
m 

Eq. #9 Approximation to unit outfit cost; "Cost Point per Ton of 

#10 outfit vs. Tons of outfit" • 
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For: 0 ~W0<. 1400: 

P t • ll.00 - 0.043 W + (O.ll.2 x 10-3) W 2 
0 0 0 

- (0.1323 x 10-6) w 3 
0 

For: 1400~ woe 2600 

p t - 2430 - l.928 w 0 0 

+ (0.722 x l0-3) w 2 - (0.091 x io6) w 3 
0 0 

For: W ?; 2600 
0 

P
0
t • Constant 

- 698.8 cost points/L. ton outfit 

Eq. # ll Approximation to steel cost. 11Cost Points per Ton Steel vs. 

Eq. #12 
#13 

Tans Steel.". 

PST = 218.4 - 21.38 L.~) + 2.06J. (1~)2 

- 0.1149 ~~)3 

Approximation to machinery cost. "Points per SHP vs. SHP" 

(SHP is normal shaft horsepower). 

For: SHP ~ 13.000: 

PMT = 137.7 -

For: SHP '? 13 .00: 

SHP 
75 .32 + 5.92 (SHP) 

l.000 

E . SHP 
Mr= 3.249 (SHP) - 173.95 
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Eq. # 14 Exact equation for the :freeboard available, in inches. 

Equation assumes 3" margin line and that the uppermost 

continuous deck is Freeboard Deck, {1.e. Full Scantling 

Ship). Equation will differ :for a shelter deck ship • 

FBA .. 12 [ D - ( 0.25 + HD 
Eq. #15 Equations for the curve of mininun permissible f'reeboard 

#16 
#17 from U.S.C.G. Load Line Regulations. (Length L.W.L. is 

assumed equal to length on summer load line). 

For: L -=.. 400: 

FA • 4.2l. + 3.59 i~6 + 3.71 ( l~r 

For: 4oo L 750: 2 

FA a - 77 .67 + 42 .58 l;, -0.60 ( 1~) 
Eq. #18 Approximation to the inertia coefficient of the design load 

water plane. 

d- = 0.0957 x cP - 0.0122 

Eq. #19 Approximation to KG of fuel oil in deep tanks and F .o. 

Settlers. For normal ships this is taken as the tank top 

height + 6Clfo of an assumed deck height. 

KGFD = K6D + 4.80 

Eq. #20 Fuel oil rate : 

Fuel Rate: F.R. = 
0.5 SHP 

SHP - 855 
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Eq. #2J. Approximation to KG of fuel oil in double bottan. For normal 

ships this is taken as (2/3) x (tank top height). 

KGFB = 0.67 ~ D 

Eq. #22 Approximation to machinery KG, with boilers full and for 

conventional arrangement for steam turbine plant. 

(B) Design Constants 

In the preparation of a program of this type, there are many 

desigc. constants used which do not vary to any great extent for the 

particular type of ship under consideration. Therefore, it seems 

advisable to list these constants here. 

0 a. Reynolds No. for S.W., 59 F: 

Re = 1.3177 x 105 (L x V) 

b. Roughness allowance: o.ooo4 

c. 

d. 

e. 

f. 

Fuel oil settler capacity = 150 L. tons. 

Mass density of salt water @ 59° F. = 1.9905 

F.O. density= 37.2 cu. ft./L. tons. 

Basis for cost calculations are straight line deprecia-

tion plus average interest, 25 year economic lif't, 

2 l/~ scrap value, 5~ simple interest • 

g. Wetted SUrface Factors with corresponding Beam/Dra~ Ratios: 



• 

W.S. Factor = ~351 
x W.S. Coeff. 

B/H Wetted Surface Factor 

(C) Design Factors 

2.25 

2.75 

3.25 

3.75 

The factors are defined as follows: 

15.o86 

i5.o46 

15 .u5 

15.293 

IO. = Correction to bare hull EHP for appendage resistance, propulsive 

coefficient and service ma.rg:in. The appendage resistance and 

P.C. Will be a function of ship type and number of propellers. 

An additional correction for percentage (%) over or under the 

equivalent Taylor Standard Series model could be used if the 

comparative merits of the parent form are known. Typical values 

for the above allowances are: 

(a) Appendage allowance = 3'fo x bare hull EHP 

(b) Propulsive coefficient = 75i 

(c) Service margin= 25~i i.e.,1.25 x SHP =Service SHP 

Using these allowances: 

Normal SHP = (IO.) x EHP (bare hull) 

= (l.25 ) ~i.o3 ) EHP l 72 EHP (0.75 x = . x 

where IO. = 1.72 
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K2 =Approximation to the Vertical Center of Bouyancy. For normal 

forms it is taken as 5~ of the draft ( .54H). (K2 = 0.54) 

K3 = Approximation to the Vertical Center of Gravity for steel 

weight; for normal ships this is taken as 611t of the depth to 

main deck (.61D), (K3 = o.61) 

K4 = Approximation to Vertical Center of Gravity for outfit weight. 

For normal. ships this is taken as equal. to the depth (D). 

(K4 = 1.00) 

K5 = Cost points for fuel oil; units are: Points per one long ton. 

K6 = Approximation to Tank Top height. For normal cargo sb~ps this 

is taken as 1/9 depth. Therefore, tank top height = K6 x D, 

where K6 = O.ll. 

KT = Approximation to the Vertical Center of Gravity of cargo weight. 

Homogeneous loading is assumed. For normal ships this is taken 

as 6?fl, of the depth (.63D). (KT = 0.63). 

KB = Approximation to Vertical Center of Gravity of miscellaneous 

deadweight items. For normal ships this is taken as equal to 

the depth (D). (K8 = 1.00). 

K9 = Ratio for modifying load waterline length to length between 

perpendiculars; L.B.P. • K9 x L.W.L. 

KlO = "SHIP USE FACTOR" for the determination of fuel oil cost points 

for one year's operation. 

The factor (KlO) is derived as follows; let 

V = Required speed ( Qwner' s Requirement). 

R "' Range between fueling ports. (owner's Requirement) • 



Wf = Tons fuel oil needed for steaming a distance 1.lOR; 

this includes a 1~ margin for reserve, see equation 

number 2; tons fuel oil required to steam a distance R 

at speed V (one trip) = 0.91 Wf. 

Uf = Percentage of time (year) ship is operating at full power. 

Ur =Percentage of time (year) ship is operating at reduced 

power. 

r = Ratio of 11fuel consumption at reduced power" to "fuel 

comsumption at full power", ( O~ rc:::. l). 

Tons fuel oil required for one hour's operation at full power 

= 
0.91 x Wf x V 

R 

Hours per year at fUl.l power = (Uf) (365) (24) = (Uf) (8760) 

Hours per year at reduced power = (Ur) (8760) 

Tons of fuel required for one hours operation at reduced power = 

( .91 Wf) fil (r). 
R 

Therefore, the total tons fuel oil required per year: 

797i.6 (uf + urr) wfv = Kll wrv = wfy 
T T 

where KlO = 7971.6 (Ur + Urr) = "Ship Use Factor" and Pf = 

total cost points for fuel oil required for one year's operation 

57 



, 
'If 

Example: 

For a conventional dry cargo ship, it is detennined from a study of 

its proposed service, speed, and cargo handling capability that it 

will be at sea 55~ of the time at a given fuel rate {see equation 

no. 20), be operating in port at minimum power {1/24 normal. fuel. 

rate) 351' of the time, and will have a "dead plant l°" of the time". 

On this basis, 

uf = 0.55, Ur = 0.35 

1 
r = ~ = o.o42, IO.O = 4500 

Cost of reserve fuel oil, which is encountered only once {during 

first refueling), is considered negligible when amortized throughout 

life of ship. 

Kl 1 -. . ~/Beam Ratio, minimum acceptable limit. For conventional dry 

cargo ships this will be taken equal to 0.05. For special type 

ships, this value may be varied to evaluate its ini'luence on 

the 110ptimum11 ship characteristics. It should be noted that 

the GM derived f'rom this ratio will be for the ship in the 

nF\l.ll Load Departure Condition", and uncorrected for free 

surface. 


