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ABSTRACT

Various existing mathematical methods of functional optimization
and optimization criteria were examined for application to the ship
design problem. Based on this study, the Exponential Rendom Search
technique in conjunction with "Multiple Parameter Weighting Criteria"
were used in a sample design study of & cargo ship. Results of this
study show that this approach to the ship design problem:

(1) yields better results than any other method available

at the present time;

(2) arrives at a solution in less time than current methods;

(3) is more versatile than any other method available;

(4) performs the ocptimization more correctly because it does
not neglect any of the features of the problem of
optimizing & function of several variables.

The demonstrated flexibility, versatility, and efficiency of the

chosen method constitute in the author's opinion, a powerful tool in

the preliminary design of ships.
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INTRODUCTION

The present state of the art in the ship design optimization prcblem
is still of the "brute force" type. Some basic parameters affecting the
size of the ship are chosen to be varied over a range in finite step
sizes. ©Naturally, both the parameters and the variation range of their
vaelues are based on experience. The result is a multidimensional matrix
that grows very fast, since it is a function of' the number of variables,
the step size, and the range chosen.

The specifications of ship reguirements such as: speed, payload,
endurance, etc., generally result in upper and lower limits on the
various ship hull parameters such as length, beam, depth Cp, C v etc,
The designer has to select the best combination of these parameters to
satisfy a set criterion such as minimum initiel cost or minimum overall
cost including operational costs,

Therefore, the designer is faced now with the problem of evaluating
the cost criterion as a function of the parameters

F=7¢ (L,B,H,D,CP,C 0! ] (1)
subject to constraints resulting from various interrelations among the

varieshles such as:

1}
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and also subject to some boundary conditiomns resulting from rules,
regulation, and past experiemce. Previous attempts (1) to find the opti-
mum cambination of these parameters were cumbersom and non eleganf.
For several reasons, they may not necessarily yield an optimum at all.
First, the method might solve for a relative minimum and not for am
absolute cne, since the selection of the search area might .exclude the
absolute extremum. Second, the probability density function of the
search is uniform, i.e. it acts like a pure random search with a
rather low search efficiency. |

For these reasons, the present effort attacks the problem
first of all as a general optimization of a function, (Eq. 1),
subject to constraints and boundary conditions. Several fields of
science, such as automatic controls, operations research, design of
experiments, to name a few, have come up with variocus methods coupled
to some criteria, for functional optimization. This investigation
examines the varicus mathematicel technigues developed in some of
these branches of engineering and science and applies the best, or the
best combination of a few, to optimize the ship design. In order to
optimize a design, we have to decide on the following:

1. Choice of the optimization technique.

2. Choice of an optimization criterion.

3. The mathematical mocdel of the desigm process.

In the first category, there are mumercus methods available

that will be examined and compared for their relative merit in gemeral



and in particular concerning the ship design problem. To name a few:

1. Closed form maximum and minimum with Lagrange multipliers

2. Steepest ascent methods

3. Various random search techniques

4, Dynamic programming.

In the second category, the following criteria will be examined:

a. The sum RMS error of all independent variables

b. Multiple parameter weighting criteria

c. Max-Ranking criteria.

These are mathematical criteria in use in other fields that have to be
examined to see if they have meaning in terms of the ship design
problem.

The third category pertains to the various relationships
particular to ships involving consideration in the fields of ship
resistance, powering, structural weight, machinery weight, rules,
regulations, etc.

There are basic differences between the ship design optimization
problem and the other fields where these techniques have been applied.
The differences are significant enough to cast doubt on whether some
of the techniques are applicable at all. For example, let us compare
the design optimization problem to an automatic control optimization
problem:

1. The objective of a control optimization is to minimize the

motion of the vehicle to which the control surface is attached.



The vehicle is subject to continuous disturbances as inputs. On the other
hand, the design process is not subject to a continuous change in inputs
once a choice of parameters is made.

2. The control problem is a time-varying process, while ship design
is a stationary process.

3. The control problem must be approached from a statistical point
of view, while the design problem requires deterministic results.

k, Perhaps the major difference is the fact that in the control
optimization, the standard of performance is assumed as fixed in the
beginning. This standard of performance mey be maximum allowable
acceleration, velocity, or displacement. In the design case the standard
of performance, which is minimumm cost, is not known at the start; it has
to be found by solving the problem, since it is the end result.

As we shall later see, this last difference eliminates the appli-
caﬁion, to the ship design problem, of the kind of optimization criterie
used in the control problem. Other fields, such as operations research,
have developed the so-called "dynamic programming" for performance
optimization., Here again, there are some basic differences between the
particular problems that this method was developed for and the ship
design problem. Varioﬁs aspects of the dypamic programming, closed form
maxima and minima, as well as the steepest ascent techniques, are dis-
cussed in Appendix A, On the basis of the examination of each of these
techniques, they were discarded and the exponential random search
technique was chosen as most appropriate for the ship design process.

This is- discussed in the next section.

y
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RANDOM SEARCH TECHNIQUES

A search of the literature reveals that most of the formal methods

proposed for finding the maximum or minimum of a function are really
useful only in the case of particularly simple functions. All of the
methods are sensitive to a lack of continuity in the function or its
derivatives, or to noise-type variations in the evaluation of the
function. To use these methods for general problems, they must be
combined with some sort of search procedure.

Although random search techniques are not new, their useful
application to engineering problems is quite recent. Karnopp [3] 3
in his doctoral thesis in 1961, pointed out some of the advantages in
employing random search techniques as opposed to purely deterministic
methods. Gall [2], in 1964, looked into utilizing various random
search techniques for controlling a submarine in a& random sea. Since
as it was pointed previously, the design problem is different in its
nature from a control problem, & basic re-evaluation of the optimi-
zation method has to be performed with the design problem in mind.

All search techniques are random, but some are more random than
others. Even the most deterministic method can be classified as
random with the randomness reduced to & minimm. Therefore, we have
two extremes--on the one side, the purely random technigues and on
the other, the purely deterministic ones. The notion that a proba-

bility of unity implies certainty and a probability of zero implies



impossibility helps describe a deterministic technique. Deterministic
schemes assume that the probability that a certain value of a function
is the minimum is unity and that the probability that any other value
of the function is the minimum is zero. In the case of the pure
random search, the probability that the (n + l)St trial point calculated
will result in a lower value of the function being investigated is

the same as the probebility that the n®P trial point results in a
lower value of the function. That is to ssy, the probability density
function of a pure random search is constant as shown in Fig. 3, while
the probability density function of a deterministic procedure would be
a spike,

A pure random search is a powerful but not necessarily efficient
procedure. It is powerful because simply by increasing the number of
trial points calculated by the procedure, the probability that the
procedure will calculate a trial point close to the precise location
of the minimum value of the function, Fmin’ increases., But for this
very reason, final convergence of a pure random search may be quite
slow. That is, its "efficiency" is low. Hence, increasing the
randomness of & search technique decreases its "efficiency". This is
shown diagramatically in Fig. 1.

The concept of randomness is related to the concept of univer-

sality. That is to say, the more random a search procedure is, the



greater is the number of kinds of functions to which that procedure
is applicable, Therefore, when one does not know too much about a
function which is to be searched, one wants initially a fairly
universal method. As one learns more about the function being ex-
amined through actuai application of a search technique, it would
be desirable to be able to reduce the randomness of the search pro-
cedure so that it becomes more efficient.

If we plot the various search methods discussed in the
introduction along the abscissa of Fig. 1, we see, for example,
that Dynamic Programming is the most "efficient"”, and hence the
least universal of the methods listed. The degree of universality
of most of the methods cannot be adjusted, and they fall at fixed
locations on this disgram, Only with the Exponential Random Search
suggested by Gall can the degree of randomness, and hence universal-
ity, be adjusted. Thus, the user can change the randomness of the
procedure as more is learned about the function from that shown in
Fig. 3 to that of Fig. 4 to that of a strictly deterministic pro-
cedure. Hence, in Fig. 1, the Exponential Random Search extends
across the entire abscissa, It is this feature of this technique
that makes it so attractive.

There is a question with the Exponential Random Search procedure
&8s to how much the probebility density function of the random search

should be influenced by the results of past trials., This question is



a very important one because it differentiates two major classes of
problems., One class of problems (which is probably the most common one),
is where the function to be optimized can be evaluated in a matter of milli-
seconds on a high-speed digital computer, and the other class of problems
is where the function's evaluation is very cumbersome because of the sophi-
sticated, interdependent constraints and boundary conditions to which the
function is subject.

In the case that we kre faced with a problem of the first class, it
will be more efficient to try & new point instead of setting up a sophi-
sticated method to evaluate and utilize all the information from the past
trials. 1In the second kind of problem, because of the large amount of
time involved in evaluation of the function, it will be more efficient
to utilize all information resulting from past trials and project ahead
to help in choosing the next trial point.

In contrast to the various methods suggested by Karnopp [3], the
search should have built-in tests for convergence and some self-opti- |
mizing features. Gall [2] suggested the exponential search which will
be examined here and compared with some other functions that might
give results similar in character, but with varying efficiency depend-
ing on the application.

In order to be able to analyze more rigorously the merits of one
form of random search against another, it will be best to choose a

simple function, for example, Fig. 2. It is required that we obtain
the minimum of the function between the limits of +K; and -K;. The
function is;

1. Symmetrical about K = 0.

2. Only the portion K = -K; and K = +K; will be considered.

3. The function between K = O and K = +K, is monotonically
increasing.

L, The function need not be continuous in slope.

8
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After an arbitrary selection of the initlal values in each
search dimension has been made, a function that will generate the Pfurther
trial points is necessary:. This function will contain a random mumber,
which is easily generated and is availeble as a library functiom in most
camputation centers. However this random number by itself is not
sufficiert since it will result in the complete random search procedure

since its search probability density function is:

2 3,

£ (K) = = for .K‘ = K
8 +Ka-t-K$j 2Ka 8

and (3)
fs(K) = 0 elsevhere

Since the probability is the integral of the denmsity
function, the probebility of choosing a number within :pﬁ% unite of

the actual minimm, K&, is

E

- B

P(K +AK >K >K - &K )
= Cc g— g— e [+]

(%)

pﬂ

This is the least efficient random search, because any choice is equally
probable, i.e. its prcbability distribution between 'Kﬁ and +Ka is
constant, (see Figure (3)).

It is necessary to transform this purely random search to

another more efficient one like that shown in Figure (4). Gall did

10



this for an exponential case as follows:

m
K=2k (G,) +
a k! T (5)
where GK. is the random number between O and 1. However, one may wonder
why this particular formulation was selected and not for example:
K=2Kaln(GK)+I(b
or
K=2K, cosh (GK) + K
or

K=2Kae(GK)+K.b (6)

or others. With every one of these functions, there exists an
associated probabillity density distribution, a probability of improve=-
ment and a best expected step change. Although each one can be computed
and campared, generalization of these results can put one on dangerous
grounds.

There is no way to generalize results obtained from one
function to another, (here function refers to the one to be minimized),
and it is almost impossible alsc to classify these functions in various
classes. Therefore, the attempt here is merely to gain insight and to
check whether one of equetions (5) or (6) is preferable to another.

Since we know that

fa(GK) = % for (GK) <1
and

(7)

fB(GK) = 0 elsevwhere

This probebility cen be transformed for each of the equations (6) to

find the probability demsity function for them.

11



It can be seen that each transformation above will give a
function that has a varying probability density function. However, the
only wey that this probability function cen be changed to give a higher
end higher probebility of improvement is to have a changing exponent as
in equation (5). By using any of the other functions proposed in
equation (6), only the first departure from a constant probability
density function is achieved. The same is also achieved by a low
powered exponent in equation (5). Therefore, it is concluded that the
simplest way of accomplishing the objective is by use of the exponential
random search, equation (5),

The transformation is done as follows:

m
kK=2K (o) +K (8a)
or
K = E(X)m + Db (Bb)
since
1
fB(GK) = £(x) = = L2 X 2 X (9)
and fs(GK) =0 elsevhere
also from (8b) with -l <X <1l
K =a(-1)" +
KZ = 8.(+1)m +b (10)
since by definition X
o
P(-1g X. 2X) = S :Eéx)d.x



also

Ky (11)

also e
x =[(K-b)/a:]
3P 3
® -0 § qme
. e (x) oy affs(x) S
£(K) = ~%5¢ ™ - T oK
and since; a = 2 Kp» b = K, and fs(x) - _%__ , (12a)
£, (K) = —= ( e "b_Yl - m)/m
b K m 2 K,

If the function F(K) is not symmetrical then the limits can be changed
fram ("KE - +K_) to (Kh - K;) and the probability density function

will be

f (K) =
8 2m(Ka - K K, - K;

_ (1-m)/m
o (%)

(13)
which is the general form of equation (12).
Using equation (13) for the probability density function the
probability of improvement*;nd the expected change step follows by

definition:

Meaning the probability that (1cb <K, ) subject to the
i+1 i

condition that it is in the range of + K&.

13
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® (k)
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K, 5 2

These results from Gall are shown on Figures (5 and 6).

So far only a one-dimensional (n=l) search has been examined.
Since the search in one variable space is independent of the search in
another, the Joint probability distribution is the product of the
‘ individual probability density functions. This is:

1 n
o u-m)/;‘\

1) (2 1V
fB(K( ), K( ) sas K(n)) =(2m(Ka_Kd))L Ka-Kd

(16)
Again, the probability of improvement can be computed as before and
plotted as done in Figures (7, 8) for two different exponents and
several dimensions.
4 The one-dimensiocnal search (n=1) is also plotted since it
represents the maximum search efficiency. From Figures (7 and 8) it is

evident that the efficiency of search decreases rapidly as a function

16
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of n. An empirical relation is gquoted by Gall[:%]a

1

(Nc)n i (Nc)l 211-

(27)
where Nc is the number of choices and n the dimension of the search
space. ‘The number of choices refers to the ones which do not fall
outside the bounded region.

The random search as explained here is very easily computer-
ized; it is efficient, general ;nd fast. Without the necessity of using
derivatives, the process behaves much like a gradient method. The ran-
dom process has the advantage of simpliecity, insensitivity to discon-
tinuities in slope and has an easily adjustable parameter which can be
changed as the search process proceeds, in order to accelerate the rate
of convergence. The random methods that will be analyzed here can be
tested by means of mental or mathematical experiments. Hence, it would
be unwise to conduct extensive computational experiments.

Its drawbacks are:

1. It suffers from dimensionality i.e. the time that

it tekes to converge will increase very fast as a function

of the space dimensions.

2. In the cese of the design problem, it is time
consuming to evaluate the function many meny times,

whereas this was not the case in the control problem

studied by Gell.

19



Given a general function, the probability of success for either
the random search or the presently used brute force approach (Ref. 1) .

is the same. Howeverathe utilization of a systematized random search

such as the exponential one is far superior to the "brute force"
method. While the letter method marches through its search space at
equel intervals and then marches through again at some finer intervals
to converge on a minimum, the systematized random search optimizes 1%~
self always around its best test result. This follows from the fact
that the systematized random search does not heve a uniform probability
density function such as the purely rendom and the "brute force"
methods have. At firat, the random search is started by a low
exponent Equ. (13) so it encompasses a large search space with
relatively low probability of improvement. Once it has started
concentrating about scme ares, a higher exponentisl search is invcked,
thus increasing the probability of improvement at the expense of
reducing the step size.

This process of changing the exponent is continued until the
method becomes sctuaslly a refinement rather then a search. It termine
ates itself by exceeding a preset tolerance. Thus, even though it
starts cut es a purely rasndom search with equivalent probability of
improvement to the equal Interval step method, it rapidly improves on
1tself as the search for the optimum progresses.

The method itself is very simple to apply. When the exponent
equals one, the search is purely random. If the function is nom-
symmetrical as is the case of Equ. (13), the searching functicm in
general is:

20



K= (K - k) (26 - )" 4 K, (18)
where GK is the random number,

Kﬁ is the best last search point,

Kd and Kﬁ are the limits of the search space

and K is the new trial point.

For a two-dimensional case the process 1s repested twice

and for ean n dimensional case n times.



OPTIMIZATION CRITERIA

A very lmportant step in the optimization process is a proper
choice of the optimization criteria, since it determines the final
outcome of the process. Whille control optimization or alloccation
optimization to name only two, can utilize various performance criterie,
the design optimization is of different nature and more limited in choice.
Let us examine three out of a large veriety of possible optimization
criteria.

Mean Sggxa.re Error Criterion

This criterion i1s the simplest both conceptionally and
mathematically. The two most common and most easily determined
statistical quantities are the mean and the variance (or mean square).
The p;oduct' Xy of two random variables is a random variable which

equals x when x = ¥ a Although it is not usually true that the

1¥3
expectation of a product is the product of the expectatioms, this is
the case when the variables are independent.

E(xy) = E(x)E(y) X,y independent (19)

(The proof can be found in any book on the subject).
When the problem involves several variables X,y.....it is convenient
to denote the expectation by a different letter. Let us say
E(x) =4£x
(20)
To measure the deviation of & variable from its expected va.lue/",

one introduces a quantity Y defined by:

22



= v E(x—M)a or Va =E [Ex-")]e

(21)
The expression v is called standard deviation and its square V = is
called the variance or (mean square).

{ultiple-Parameter Welghting Criterion

Based on the same principal as the previous criterion, but
with added generality, the multiple-parameter weighting criterion is
more flexible. It allows for weighting each parameter against each
other, thus inereasing or decreasing the role of each parameter in the
optimization process at will

C =W (x-’n&)a + W, (x-/)g-r)":e + Wy (z--”’/z)2 H.ues
(22)

Multiple-Parameter Max-Ranking Criteria

This method employs a ranking array. The essential factor
here is that each system attribut’ which is to be considered in the
optimization is rated sgainst an absolute scale of desirability. An
example of a possible ranking array for a system of 4 varisbles is
given in Table I. For example, consider row 2 C(I) =1 . A value

of DELl = 3 18 considered as desireble an end result as DEL, = 8 or

2

DEL3 = 0.7.

Desirability c(1) IEL, DEL,, IlELs DELy,
0 0 1 0

Most Desirable b 3 8 0.7 0.2
2 L 10 0.9 0.3

least Desirsble 3 4 17 1.0 0.3
y 9 18 1.2 0.5

TABLE 1 MAX-RANKING ARRAY

23



The construetion of this ranking array should be carried ocut
with a great deal of thought. The results of the entire optimization
study will depend upon the values selected. In order to comnstruct
the ranking array, the designer must have a good appreciation of the
system capabilities and requirements.

Once the ranking array is set up, it can be applied in a
straight forward simple manner. The first step is to assign velues to
each G(I) for any given set of system variables. This can be
accomplished by any interpolation scheme which the designer desires to
employ.

As an example, let us refer back to TABLE 1. Let us suppose
that for a given ship design the @ifference between the desired payload
and the actual payload is DELl = 4 and the difference between the
desired stowage factor and actual stowage factor is DEL2 = 9, DEL3 =1.0

and DELh = .l are some other pertinent parameters. Then linear inter-

polation in TABIE 1 gives the following values for each C(I).

c{1) = 2.0
c(2) = 1.5
c(3) = 3.0
c(k) = 3.5

This essentially establishes the desirability (for this
particular case) of each of the four resulting variables.

Two different approaches can be tzken in an attempt at
essigning an overall desirability based upon several values of the

individual C(I)'s.

24



The first method defines the overall desirability as the
average desirabllity of the resulting individual variables. For the
particular example being considered, this gives:

N
Cy = % :E:_C(I) = % (2.0 + 1.5 + 3.5) = 2.5 (&3)
x=1
This method is exactly equivalent to the multiple-parameter weighting
criterion, whose weighting parameters are functions determined by the
ranking array. This method has only one advantage over the weighting
method, i.e., a methodology for determing the weighting functions. The
principle disadvantage is that there is implicit weighting between the
columns of the ranking arrsy, The minimum value of the system desiras
bility (Ca) based upon this averaging method would be one which produced
low values of C(1), ¢(2) and C(3) at the expense of higher values of C(4).

A much better method is one which equates the overall system
desirability with the value of C(I) corresponding to the least desirable
of the resulting individual attributes of the system, This,in effect,
states that the system is no more desirable than its least desirable

attribute. This method has been termed Max-Ranking. The Max-Ranking

measure of system desirability (CM) is defined simply as:

Cy = C(I) oy (2h)

Thus, for the example being used here, CM is

Cy = ¢(1) = 2.0; c(2) = 1.5; C(3) = 3.0; C(4) = 3.5
or
CM. = C(ll-) = 3.5

The criterion of optimelity is, that CM should be minimized.

25



SELECTION OF AN OPITMIZATION CRITERION

On the basis of an evaluation of the ship design process, it
was decided that the overall optimization criterion should be composed
of three terms. One of these is an economic criterion and following
Ref. (1) this has been chosen to be the sum of yearly operating costs
plus ennual depreciation and interest charges. Clearly the optimization
process should seek to minimize this cost rather than seek to achieve a
certain predetermined level of this cost. Unfortunately, this fact
eliminates the Max-Ranking criterion as a possible optimization criterion
for the ship design process, since as noted in the previous section,
the Max-Ranking criterion can deal only with optimization noted
against an absolute scale of desirability.

= The other two parts of the optimization ecriterion constitute
the boundary conditions of the criterion. They are two owner's
requirements; payload weight and payload volume (stowage factor)*.
These two factors are compatible with the Max-Ranking criterion since
a prescribed value of those two factors is sought in the design process.
However, even for these two, setting up an absoclute scale of desirability
can only be done in an artificial way.

However, because of the fact that use of the Max-Ranking
criterion is incompatible with the least cost criterion, the multiple
parameter weighting criterion was chosen as the best suited to the ship

design problem. Following the previous discussion and equation (22),

¥The other two owner's requirements, speed end range are assumed as
fixed input ltems.
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this criterion is:

C=W, * (DELWP)2 + Wy * (DEISF)2 + W, * (COST)E

3
(26)
where
Wi, WE’ and W3 are weighting factors.

TEISF - is the difference between the actual and required stowage factors
DEIWP - is the difference between the actual and required payload weight
COST -~ straight line depreciation plus average interest, 25 year

economic life, 2.5% scrap value, 5% simple interest, reduced

to a yearly expenditure basis. A yearly fuel cost is then

added to this figure.
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THE MATHEMATICAL MODEL

What is needed in the ship design problem is the mathematicel

model that determines the cost (initial plus operating costs) &s &

function of the basic parameters defining the form and size of a ship.

These basic parameters are listed below along with the major technical

considerations and weight groups which they influence. Also listed

are the two functional interrelationships between the displacement and

the weight groups and between the displacement and the other basic ship

form parameters.

(1)
(2)
(3)
(&)
(5)
(6)

where

.‘-’-132

= =

Length, L - power, (Wm, Wos WB)

Breadth, B, - stability and period of roll, (Ws)
Depth, D, - strength, (WB)

Draft, H, - hydrographic restrictions

Cp - residuary resistance, (Wm, Wf)

A - displacement, A = Hs + wm + wf + aees + Wp and

A=CpxcmexBxH
35

machinery weight group
fuel weight group
structure weight group

payload weight group
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Because the time required to obtain a solution is affected
adversely by the number of dimensions of the search space, it is
essential to minimize the number of veriables. One way of accomplish-
ing this i1s to combine the ship dimensions into dimensionless ratios.
Thus the following four dimensionless and one-dimensional parameters

can replace the previous six-dimensional parameters.

1. B/H
2. L/D
3. v/ \gL or v/\ﬁ- (c, = f(v/\rf)
¥, ¢
P
5. A

One of the variables must remain dimenaional and this was chosen to be A.
But it is clear that it could also have been B or H or L, since A =
LBHCPCm. The third perameter will be recognized as the Froude number
or speed-length ratio. Since in this parameter, speed 1s a prescribed
input item, en initiel random selection of V/ \T fixes the initial
length selection.

The optimization criterion C, of Ey. (26) will be a function

of the preceding 5 variables, i.e.,

c =f (a, B/H, L/D, V/\|L, C_)
0o 50, S\ (1)

To completely define this function, the midship section coefficient is
required too. Because it has only a small influence on the final
result, 1t was assumed to be a dependent variable, i.e., Cm = f(V/ﬂTﬁ).
(see Equation 1 of Appendix B). The criterion C is also subject to two

additional constraints.
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l. Load line regulations reyuire a certain minimum freeboard
for each ship as a function of L mainly, but also depending on D and CB'
(CB = Cp X Cm). In this study the relatively smnll dependency on D and
C_, was neglected.

B

2. The second constraint is a minimum stability requirement
which is expressed in terms of minimum acceptable GMAE ratio.

A question exists as to why displacement is selected as a
basic dimension of the search space. TFor example, it can be argued on
theoretical grounds that the specification of the four owner's require-
ments, i.e. speed, range, payload weight and stowage factor along with
an initial random selection of the four basic dimensionless parameters,
B/H, L/D, V/\ri end CP determine a unique value of displacement.

While this is true theoreticaelly, practically, there is great difficulty
in determining this velue of the displacement primarily because the
estimates of ship power require preknowledge of ship displacement as
well es ship speed and the other ship dimensions and coefficients.

For this resson, in the current work, displacement is one of the basic
dimensions of the search space. Thus for each initial selectlon of
displacement and the other four basic dimensionless parameters, plus
the initial input of a required ship speed and range, there exists a
unique value of payloed weight and of stowage factor. The selected
optimization criterion then seeks to minimize the error between these
values of payload weight and stowage factor and the velues specified by
the owvner as well es to minimize cost. In this way, the random search
method eventvally echieves compatibility amongst all of the parsmeters

involved in the ship design process.
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THE SOLUTION

The ranges of the five basic parameters within which the random

gearch process will conduct its search are determined as follows:

(1) B/H, v/V'E} & Cp: The ranges of these three parsmeters
are determined by the coverage of the model resistance series used to
determine residuary resistance. If the Taylor's standard series
(ref. 5) is used, the ranges are as follows:

B/H - 2.25 to 3.75

VAL - 0.5 to 2.00

CP - 0.48 to 0.80
These represent far broader ranges than are likely to be needed for
most conventional ship designs.

=T (2) L/D: The upper limit of this parameter is restricted

by the minimum permisseble freeboard specified by the U.S.C.G. Load
Line Regulations and given in Equations 15, 16, 17 of Appendix B.
(See also Eq. 14). For the current study, no lower limit was placed
on the range of this parameter.

(3) A: The range of this parameter is initially selected
arbitrarily by the designer based on his experience. If his initial
selection of the displacement renge is poor, this will be immediately
evident as the random search progresses because there will be a per-
sistently large error, either always positive or always negative
between the required values of payload weight and stowage factor and

the values computed by the program. If this happens, the displacement
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range can be readlly adjusted by the designer either upward or downward
after several trial points are gencrated.

The optimizetion criterion C, is then evaluated sterting with
randomly selected initial values (within the ranges of values just
discussed) foxr each of the five parameters, (B/H, L/D, V/rl_.,‘ cp, A).
Based on these initilally selected values, the program carries out computa-
tion of the following items sequentially:

8. The frictional resistance coefficient using the ITTC line.

b. The residuary resistance coefficient using Taylor's
Standard Series,Ref. (5).

c. Knowing the total resistance and hence the total power
(see Appendix B, Item C,) as well as the ship dimensions, Wm, HB,

Wf, ete. are computed.

d. The total cubic space availeble.

e. The total cost.

f. The two constraints, stownge factor end payload weight.

For the computation of the various weights, centers of
gravity, stability (GM) and costs, empirical equations and constants
derived from Ref. (1) and listed in Appendix B are used. These
empirical relationship, which are not universally applicable to all
types of ships, can be changed without affecting the general method
vwhich i1s tested here. To make the computer program completely general,
Lhe empirical expressions in their elgebraic form could have been read
in to the computer as data using a Fortran compatible lenguage called

FORMAC. This, however, was not actually done in this study.
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Once the optimization criterion C is calculated for the initially
selected random values of the five dimensions, the optimization procedure
can conmence. A new random value is generated in each search dimension,
a new C ls computed and compared to the previcus value. Only values of
C smaller than previous ones are used to generate further values.

Larger values are discarded.

The procedure,thus far, results in repeated evaluations of C
within the coverage of the five=dimensional space funciiom, As
explained in the section describing the random search technique,
increasing the exponent of searchﬁresults in a decrease of the expected
step length on the account of the increase of probability of improvement.
Thus gradually, the exponent is increased, starting with n = 1 (pure
wandom search) so as to cover the whole search space at the beginning,
to larger exponents in order to increase search efficiency. The

search procedure is terminated after a prescribed number of good

choices fails to produce an improvement on a preset tolerance.
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RESULTS AND CONCLUSIOINS

In order to demonstrate the correctness of the results of the
dusign subprogram developed in this study, the characteristics of the
sample ship shown in Ref. (1) on page 66 were reporduced by using the
same input parameters A, CP, v/V1} B/i and /D as in Ref. (1).

These results, together with those computed in Ref. (1), are shown
in TABIE II. As it can be seen, agreement is excellent. The slight
difference in the cost and payload weight stems from the slightly
higher horsepower which, in turn, results in slightly higher fuel
welght and machinery weight. This, in turn, reduces slightly the
payload weight since the displacement is the same. However, all of
these slight differences which may result from different ways of
interpolating the Taylor's standard sexlies are within an error of

+ 0.5%.

Having shown that the design  subprogram of the optimlzation
method produces accurate results, there remains to be demonstrated by
actual calculations, that the optimization method developed in this
study has merit compared to current computational as well as manual
techniques. It is believed that the proposed method has the following
advantages:

(1) It searches out lower cost ship designs for a given set
of owner's requirements.

(2) If there is more than one lowest cost design, the method

will locate it.
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VERIFICATION OF THE RESULTS OF TIE SHIP DESIGN PROCESS

TABLE II

(1) (2) (1) (2)

Design No. Design From Design From Design From Design Fram
Source Random Search Ref. (1) Random Ref. (1)
Closest to Ref. (1) Search
Range - 13060. 13000. I L | 509.6 509.5
Speed 20.0 20.0 B 80.3 80.3
Payload 8977.33 9001.52 H 29.3 29.3
| SHP 1690k. 16775.

S.F. 90.95 90.04 |
Cost Points 27112k 2700386 |
Displacement 19891 19891 —wo 2214 .6 221h.6
¢, 597 597 | WS Le68.7 4669.0
v/\\_L-‘ .886 886 WM 889.2 885.8
B/H 2.7% 2.7k WF 2841.2 2820.6
L/D 10.48 10.47 Margin 300.0 300.0
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(3) It performs the necessary calculations more quickly and
at less cost than current methods.

(4) It is more flexible and more versatile than any other
method available.

(5) As a result of having the camputer program writtem for
a time-gharing system, the proposed method permits comtinuocus dialogue
between the designer and the camputer.

(6) By utilizing a newly developed computer language called
FORMAC, all the empiricel expressions in their algebraic form can be
input to the program rather than part of it, thus enabling quick and
easy changes of the empirical information without the necessity of
altering the program itself.

The first advantage i1s demonstrated in TABIE III which shows
a comparison between the characteristics of two ship designs computed
by different methods, but all intended to conform to a range of 13,000
miles, a speed of 20 knots, a payload weight of 9,000 tons and a stowage
factor of 90. It is clear that the proposed method seeks out a design
that conforms more closely to the owner's requirements and for less cost
than the computational approach of Ref. (1).

The reason for this result is the fact that the current
method treats the optimization problem as a five-dimensional surface,
rather than breaking it down into five one-dimensicnal curves as is done
in Ref. (1). By constructing a smooth curve through four points, small

variations in the cost curve may have been washed out in Ref. (1).
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TABLE III

COMPARISON OF SHIP DESIGNS COMPUTED BY TWO METHODS

Design No. (&) (3) (%) (3)
Cémputer Mininum Computer Minimum
Design Cost By Design Cost By
from Ref. Random from Ref. Random
(1) Search (1) Search
Range 13000 13000 {|L 518.2 534.6
Speed 20.0 20.0 |[{B 80.23 7.4
Payload 9002 9005.7 ||H 29.93 28.76
(owner's
req't.)
SF 89.77 88.47 D L8.54 46.6
Cost Points | 277,884 269,489 || aM/B 0504 .0510
e it SHP 16,372 16,277
Displacement | 20,239 19,890 {|WO 2272 2255
cp .585 600 ||wWs k756 k715
v/{z' .879 865 ||wm 875 873
B/H 2.680 2.692 ||WF 3034 27kl
L/D 10.680 11.500 || Misc. 300 300
Deadwgt.
Margin ——- ——
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By treating the multi-dimensional surface as it really exists, small
undulations are detectable. When searching for a minimum cost ship in
a limited range of the variables, it is obvious that the cost varia-
tions are not going to be large. Rather, the hope is to find such a
set of ship characteristics which would be slightly better than others
in the specified range.

TABLE IV demonstrates the second advantage of the proposed
method. Since a five-dimensional surface may be multimodal, there
might be several combinations of ship characteristics which yield the
same cost. A demonstration that there are at least two designs of
quite different dimensions that ere close to minimum cost ship.is displayed in
S Iv'As far as the third advantage is concerned, the method proved
to be very efficient. A normal search of 500 search points took about
one minute on the IBM TO94 computer.

To demonstrate the flexibility and versatility of the method,
it will be recalled that the criterion consists of three parts; the
payload weight, the stowage factor and the cost, each assoclated with a
particular weighting factor. In the design stage, the owner may also
be interested in the effect of variations of the payload welght and
stowage factor on cost and ship dimensions. The output of a random
scarch for an optimum design will not only yield the least cost design,
but will also disclose the effect of small changes in stowage factor and
payload weight on cost. This flexibility is achieved very simply by
weighting one factor more than another in the criterion. These effects
are displayed in TABIE V.

Advantages five and six are a result of utilizing the latest

advances in digital computer methods, software and systems.
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TWO SHIPS WITH IDENTICAL COST

TABLE IV

Design No. (5) (6) (5) (6)
Ship No. 1 Ship No. 2 Ship No. 1 ship No.
Range 13000.0 13000.0 1 506.6 534.8
B 81.1 77.0
Speed 20.0 20.0 H 29.7 28.6
D 48.4 k6.5
Payload 8997.58 8989.94 GM/B 054 .050
S.F. 88.879 88.874 SHP 16755.9 16592.9
Cost Points 270787. 270539.
Displacement 19891. 19903 WO 2229.1 2239.4
c, 0.587 0.606 Ws h661.6 4700.9
v/ \fL—' .889 0.865 WM 885.3 881.0
B/H 2.731 2.692 WF 2817.6 2791.7
L/D 10.465 11.500 Margin 300.0 300.0
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TABLE V

THE EFFECT OF WEIGHTING FACTORS

Design No. (7) (8) (9) (10)
Wl 1.000 50.000 1.000 1.000
w2 1.000 1.000 50.000 1.000
W3 1.000 1,000 1..000 50.000
Required Payload | 9000.0 9000.0 9000.0 9000.0
8973.5 9000.2 9051.9 8859.0
Req“i;:gtizwage 90.0 90.0 90.0 90.0
R T 88.26 86.77 90.27 87.7h
Cost Points 269,756.7 | 269,364.6 279,37k.6 | 267,996.8
A 19687.6 19887.6 20379.9 19692.0
cP 584 .583 .566 .583
v/ L 867 867 .86k 867
B/H 2.714 2.700 2.822 2.700
L/D 11.419 11.500 1.4 11.500
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APPENDIX A,
THREE METHODS OF OPTIMIZATION

() Closed Form Solution

Given a function f(x,y) where x and y are two independent variables, it
can be shown that the necessary condition for & maximum (or minimm) of
f(x,y) at x =a 1is that

B p (1-A)
ax
if this derivative exists at x = a, Similarly, f(x,y) will attain a maximum

(or minimum) at y =b if

2 - (2-A)
dy
and the derivative exists. The coordinates (a,b) thus satisfy the equa-
tions ‘
2 0 and 2 0 (3-a)
ax oy

at any point (a,b) where f£(x,y) attains & maximm or minimum,
In addition, the problem of design will undoubtedly contain variables
which are not independent, thus resulting in a constrained extremum.
Let us consider the following problem:
Given a function of several variables f(xl, Xps X3 een xn) subject to
several constraints;
¢l (xl, JC2, 1{3 e xn) =0
%5 (xl, Xgs Xy eee xn) =0
(4-4)
?, (xl, Xy Xy e xn) =0
and each variable bounded by some two values, what is the absolute extremum?
The equivalent single requirement to the vanishing of 2L ang ) simul-

taneously, is the vanishing of its total differential ax at %y the
maximum and minimum points of the function; i.e.,

DL dxl+ Bt dx2+——af 3 e af dxn--o

axl X, ax3 ax
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Equation (4-A) yields also the following:

-:a-?g'—dx+atpldx+acpldx+...awldx=0
ax 1L ax 2 x, 3 ax D
1 2 3 n
(5-4)
i dx, + ¥ dx, + i AX. + ... i dx_ =0
2 ax x, o ax O
= 1 2 3 n

For purposes of simplicity and since by now the generalitfy is
obvious, let us consider that the function is only dependent on three

variables, subject to two constraints; i.e.,

f(xsy':z) =0
Ql(xay’z) =0
¢2(x,y,z) =0

Using the method developed by Lagrange, the total differential of the
constraints are multiplied and added to the equation of the function
to obtain:

af of
('-- + A 1 + P2 ) dx + (L-- + A i + 2 -Efg:) dy

ax T oax ax ay L ooy ay

(6-A)

o w
4 [ o—— ll + Ay dz = 0
dz oz az

Now, let 11 and 12 be determined so that two of the parentheses in

Equation {6-A) vanish. Then, the differential of the constraints
multiplying the remaining parenthesis can be arbitrarily assigned and

that parenthesis must also vanish. In other words,

3y 3y
ax ay
J(x,y) = #0 (7-4)
3¢2 a@g
ax 3y

where J(x,y) is the Jacobian of x and y.
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Thus, we must have:

af (sl 3P,

—_— ) + 12 — =0

8x ax 3x

ar 2 %

s £ 1 +12-—-2-=0 (8-4)
ay 3y ay

of 2 2

— =, S w0

oz az [-}4

P (x,y,z) =0

) (st:z) =0
The result is five equations with five unknowns--x, y, 2, 11, and 12.

It can be shown that there will be a number of equations corresponding
to the number of unknowns even if the constraints contain only part of
the number of unknowns or if there are more constraints than unknowns
or any other limiting case. Thus far, this closed form sclution of the
general n dimensional problem seems very promising for the design
problem. There are, however, a number of drawbacks that will now be
examined. As before, for simplicity, we will restrict ourselves to
functions of one or two variables, However, the conclusions are easily
adapteble to functions of n variables.

1. Figure 9 shows & very general function. It is obvious that
there are several maxima and minima and since we seek the absolute’
mihima, there will have to be some testing done because calculus methods
cammot seek other than relative extremes,

2; The method described above assumes an unbounded function.
Therefore, from Figure 9, it is obvious that after all this effort of
extreme seeking technique, it might turn out that none of the locations
found is the absolute minimum,

3 The method assumes continuous functions in order to obtain
derivatives, As seen on Figure 10, it is conceivable that the hypre-
surface (surface in n dimensional space), made of several well-
behaved functions on their own, will still have discontinuous inter-

sections.
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b, Even though all functions and the hypresurface will be well
behaved, the resulting set of simultaneous equations with the Lagrange
multipliers will be nonlinear and probably coupled. This necessitates
resort to complicated numerical methods for solution. Linearization is
not applicable in this case since we are not considering a converging
series of a small motion problem about an equilibrium position. Linear-
zing these equations would mean losing the whole significance of the
problem.

5. Another consideration has to be adaptability of the method to
a digital computer which, in this case, is impossible in the normal
computer languages since they can manipulate only numbers. This means
that if one wanted to computerize the closed form method, 90% of the
solution would have to be done without the aid of a computer and the
only task left for the computer would be routine numerical calculations
essentially taking the place of a desk calculator; a wasteful use of a
digital computer,

6. A recently developed language by IBM called "Formac" could
overcome most of the difficulties mentioned in (5), since it enables
symbolic solution of mathematical problems. At first, this language
raised the hope of programming a general optimization problem where
both function and constraints could have been input data in a functional
form. However, the last step in the solution, i.e,, the solution of the
simultaneous nonlinear ualgebraic equations, eliminated this possiblility
also.

T The last drawback of such a method would result from having
to evaluate such points as shown in Figure 11. They are obviously
"noise" type information which is entirely uninteresting as far as the

design optimization problem is concerned.



(b) Steepest Ascent or Descent Optimization Technique

The steepest ascent or descent method as summarized by Gall,
Ref, [2], uses the following logic:

1. Determine the partial derivatives with respect to each of
the n dimensions at the present position which is arbitrary. This is
usuelly done by calculating the value of the function whose minimum is
sought at sm2ll increments on either side of the present position. The
average partial derivatives through the present location can then be
calculated for the particular dimension. This is repeated for all n
dimensions,

2 Determine a new location by choosing increments for each of
the n dimensions proportional to their own partial derivatives.

(The directions chosen for each dimension, of course, depends upon
whether a maximum or minimum is being sought.) This particular choice
of increments forces the new location to be in the direction of the
steepest path which passes through the old location.

3. Steps 1 and 2 are repeated until a local mexima (or minimum)
is reached., In actuslity, the search is stopped when all the partial
derivatives are below some predetermined level, since otherwise the
search could go on indefinitely locking for exactly zero partial
derivatives.

L, Repeat steps 1 through 3 for several starting points. This
is necessary since each starting point can only result in the deter-
mination of a single extremum. In most multidimensional problems,

there will be several relative extrema,

This method has several drawbacks:

a, The partial derivatives have to exist; i.e., no discon-
tinuities are allowed.
b, A high value of slope would indicate large increments; there-

fore, if the extreme is located at the intersection of two hypersurfaces,
the method will oscillate back and forth. However, if the function is
well-behaved and unimodal, this method is quite efficient.

a., The process is time-consuming since for each trial point 2n
additional points have to be evaluated where n is the mumber of

dimensions the function depends on.
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(c) Dynamic Programming

In any search for optimization techniques applicable to the problem
at hand, it is imperative that dynamic programming be considered. Its
phencmenal reduction of dimensionality when applicable, Ref. [h], the

resulting freedom from the form of the expressions involved, and its
almost automatic generation of all manner of conditional optima indicate
that some effort be expended in evaluating this technique.

In order to apply dynamic programming, two conditions must be met:

1. One must be able to order the decision-making process in
such a way that the state of the system after each decision can be
described by a small number of parameters.

2. Any decision in the sequence depends only on the present

state of the system and not on past states (Markovian property).

Of course, it is always possible to get the Markovian property
by adding more parameters. This is useful only if the resulting system
does not violate 1.

Can the ship design process be organized in such a way that
conditions 1 end 2 are met? Strictly speaking, this question 1s vacuous.
What we really want to know is: With our present state of knowledge of
the interactions between the variocus subsystems that make up the ship
design process and, most important, with our present state of know-
ledge of our own desires, can we so order the design problem? The
answer to this question is probably not. To get a feel for this, let
us examine two restricted formulations of the problem for which dynamic
programming might be a considerable aid and see what is required.

1) Let us suppose that given the owner's requirements we some-
how determine a feesible welght, space, and moment. ILet us suppose
further that we can measure the "return" of each system by the negative
of the cost of that system which is a function of weight, space and
moment of that subsystem. Then, if our intention is to maximize this
return, we have a fairly simple three-simensional dynamic program--the
problem being to allocate the available weight, space, and moment among

the various subsystems in such & manner as to minimize cost. The
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owner's requirements will enter in the minimum that each of these
quantities can assume for each subsystem. This formulation has two
obvious drawbacks:

a) It does not tell us how to get the feasible solution which
if arrived at in same intelligent manner will probably be fairly
close to the optimum anyway.*

b) Our objective in ship design is rarely to simply allocate a
certain amount of money among the various components, but to
minimize the total.

2) Let us suppose we somehow determine & feasible combination
of dollars, weight, space, and moment. Suppose further, that we can
characterize each subsystem by an "efficiency" which is a function of
the dollars, weight, space, and moment allocated to that subsystem.
Suppose finally, that we can asgree that the overall value of the design
can be characterized by some function of these efficiencies, which
function we shall wish to extremize., This cen be set up as & four-
dynamic program.** This formulation is also open to objection
(a) above--how do we get feasible solution? It replaces objection
o) by its more basic form--can we agree on the subsystem and overall
system "efficiencies" required. This last, of course, is not a dynamic
programming problem; but until the answer is "yes", it is not quite
clear how we can utilize this technique without complicating matters

more than it is necessary.

* Notice, if the solution offered is unfeasible, the dynamic program will
discover it fairly quickly. It will also yield some information on how
unfeasible it is. This opens up the possibility of an iterative pro-
cedure utilizing dynamic programming to obtain the feasible (and thus

the optimum) solution.

** It does not mean that solving 3 and 4 dimensional dynamic programs is
very straightforward. Full use of the Lagrange multiplier techniques is
one way., On the other hand, by conventional methods we would have a

L x N dimensional problem where N is the number of subsystems,
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APPENDIX B

(Based largely on Ref. (1))

Empirical Equations, Design Constants and Design Factors

(A) Empirical Equations

These equations are the basis for all camputer results and

are included for illustrative purpose only. These equations could

undoubtedly be presented in verying forms with varying degrees of

accuracy .

Unless stated to the contrary, all lengths and speed/length

ratios are based on "Length-on-Waterline" (L.W.L.). In equations where

"Length Between Perpendiculars" (L.B.P.) is required, L.W.L. is modi-

fied by & suitable Design Factor (K9).

Eq. #1

Eq. #2

Eq. #3

Used to determine optimum midship coefficient (Cx) for any

given speed/length ratio.

CX = 0.977 + 0.018 (v/!T) + 0.076 (v/ VI)® - 0.115 (v/VT)3
Used to determine fuel oil capacity (toms). This is an exact
relationship for the amount of fuel oil (WF) required to sail
a given distence (R) plus 10%, at a given speed (V). The
equation depends on a relationship of Fuel Rate vs. Shaft

Horsepower - see equation no. 20 (F.R. = Fuel Rate)

R x SHP x F.R.
v

(1.10R) x SHP x F.R.

=3
SRS = 0.491 x 10

WF =

Used to determine gross bale cubic of the ship. This curve
applies to all dry cargo ships except where excessive sheer

is used. This expression includes machinery space volume




Eq. #5.

Eqg. #6

Eq. #7

Eq. #8

Eq. #9
#10

and excludes the double bottom and peak tanks.

G.B.C. = 0.875 [L xBxDx CBJ K9

Used to approximate fuel oil capacity of the double bottom
(WFB). This assumes IBP = K9 x IWL. This equaticn mmst be
modifled for excessive tank top heights and different fuel

types.

WFB = E,-T-:-L-é EK9x L) x B x (I{6 x D) x (0.69 CBﬂ , where

C]3 = Block Coeff. at L.W.L.; factor 60% is a correction

for, (a) structure in inner bottam, and (b) correction to

obtain CB at the W.L. height equal to tank top height.

F.0. stowage factor = 372. Ft3/L.T.
WFB = 18.55 x10'3[LxBxDxCB] Kg % K9
= 21.20 x 103 [G-B-C- from Eg. ﬂ K6

Approximation to outfit weight,
1.60
W= 0.15 S%&E

Approximation to steel weight,

L (B - D) x k9 1*19

100

WS = 2.107

Approximaticn to "wet" machinery weight,

W_=7.8 SHP 0.495

Approximation to unit ocutfit cost; "Cost Point per Ton of

Outfit vs. Tons of Outfit".
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For: 0 &W.< 1%00:

= - -3 2
B 1100 - 0.043 W, o+ (0.112 x 107°) W

- (0.1323 x 10°%) wo3

For: 1ho0g W & 2600

Pt ™ 2430 - 1.928 W

+ (0.722 x 1073) wca - (0.091 x 10°) "’03

For: W_ 3z 2600

P . = Constant
ot
= 698.8 cost points/L. ton outfit
Eq. # 11 Approximation to steel cost. "Cost Points per Ton Steel vs.
Tons Steel".

” 2
Pgp = 218.4 « 21.38( W ) + 2.061 W, -
1000 00

- 0.11k9 ( W_ )3
1000
Eq. iag:le Approximation to machinery cost. "Points per SHP vs. SHP"
13

(SHP is normal shaft horsepower).

For: SHP < 13.000:

- - SHP
By = 1377 T5.32 + 5.92 (GHP)
1000

For: SHP ? 13.00:

E = -—SHP ]
MT 3.249 (SHP) - 173.95
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Eq. # 1k

Eq. #15
#16
#17

Eq. #18

Eq. #19

Eq. #20

Exact equation for the freeboard available, in inches.
Equation assumes 3" margin line and that the uppermost
continuous deck is Freeboard Deck, (i.e. Full Scantling

Ship). Equation will differ for a shelter deck ship.

Ry, =12 LD - (0.25 + Hﬂ
Equations for the curve of minimum permissible freeboard
from U.S.C.G. Load Line Regulations. (Length L.W.L. is

assumed equal to length on summer load line).

For: L <400:

100

F, = 4.21 +3.59 (1) +3.71(_L)®
160

For: 400 L 750:

2
F, = = T7.67 + 42.58 === - 0.60 (2=
A : <% 100 ’ 100

Approximation to the inerties coefficient of the design load

water plene.

o& = 0.0957 x CP - 0.0122

Approximation to KG of fuel oil in deep tanks and F.O.
Settlers. For normal ships this is taken as the tank top

height + 60% of en assumed deck height.

KC—FD = K6D + 4.80
Fuel oil rate:
0.5 SHP

Fuel Rate: PF.R. = mg
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Eq. #21. Approximation to KG of fuel oil in double bottam. For normal

ships this is teken as (2/3) x (tenk top height).

Ky = 0.67 K, D
Eq. #22 Approximation to machinery KG, with boilers full and for
conventional arrangement for steam turbine plant.

KEM = 0.55D

(B) Design Constants

In the prepsration of a program of this type, there are many
design constants used which do not vary to any great extent for the
particular type of ship under consideration. Therefore, it seems
advisable to list these constants here. .

8. Reynolds No. for S.W., 59o P

Re = 1.3177 x 10° (L x V)

b. Roughness allowance: 0.0004

c. Fuel oil settler capacity = 150 L. tons.

d. Mass density of salt water @ 59° F. = 1.9905

e. F.0. density = 37.2 cu. ft./L. tons.

f. Basis for cost calculations are straight line deprecia-

tion plus average interest, 25 year economic lift,
2 1/2% scrap value, 5% simple interest.

g. Wetted Surface Factors with corresponding Beam/Draft Ratios:
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W.5. Factor = U35 X W.5. Coeff.

B/H Wetted Surface Factor
2.25 15.086
2.75 15.046
3.25 15.115
3.75 15.293

(C) Design Factors

The factors are defined as follows:
Kl = Correction to bare hull EHP for appendage resisteance, propulsive
coefficient and service margin. The appendage resistance and
P.C. will be a function of ship type and number of propellers.
An edditional correction for percentage (%) over or under the
equivalent Taylor Standard Series model could be used if the
comparative merits of the parent form are known. Typical values
for the above allowances are:
() Appendage allowance = 3% x bare hull EHP
(b) Propulsive coefficient = T5%
(¢) Service margin = 25%; i.e.,1.25 x SHP = Service SHP
Using these allowances:

Normal SHP = (K1) x EHP (bare hull)

_ {2.25) (1.0 3
_-(—(E,%—lleHP 1.72 x EHP

vhere K1 = 1.72
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K2 =

Kb =

Kf =

K8 =

K10

Approximation to the Vertical Center of Bouyancy. For normal
forms it is taken as 54% of the draft (.54H). (K2 = 0.5k4)
Approximation to the Vertical Center of Gravity for steel
weight; for normel ships this is teken as 61% of the depth to
main deck (.61D). (K3 = 0.61)

Approximation to Vertical Center of Gravity for outfit wedight.
For normal ships this is taken as equal to the depth (D).

(k4 = 1.00)

Cost points for fuel oil; units are: Points per one long ton.
Approximation to Tank Top height. For normal cargo ships this
is taken as 1/9 depth. Therefore, tank top height = K6 x D,
where K6 = 0.11.

Approximation to the Vertical Center of Gravity of cargo weight.
Homogeneous loading is assumed. For normal ships this is taken
as 63% of the depth (.63D). (K7 = 0.63).

Approximation to Vertical Center of Gravity of miscellaneous
deadweight items. For normal ships this is taken as equal to
the depth (D). (K8 = 1.00).

Ratio for modifying load waterline length to length between
perpendiculars; L.B.P. = K9 x L.W.L.

"SHIP USE FACTOR" for the determination of fuel oil cost points
for one year's operation.

The factor (K10) is derived as follows; let

V = Required speed (Owner's Requirement).

R = Range between fueling ports. (Owner's Requirement).



3

Wf = Tons fuel oil needed for steaming a distance 1.10R;

this includes a 10% margin for reserve, see equation
number 2; tons fuel oil required to steam a distance R

at speed V (one trip) = 0.91 Wf.

Uf = Percentage of time (year) ship is operating at full power.

Ur = Percentage of time (year) ship is operating at reduced
pover.

r = Ratio of "fuel consumption at reduced power" to "fuel

comsumption at full power", (Ocr<l).

Tons fuel oil required for one hour's operation at full power

0.9l xWE XV
R

Hours per year at full power = (Uf) (365) (24) = (uf) (8760)

Hours per year at reduced power = (Ur) (8760)

Tons of fuel required for one hours operaticn at reduced pover =

(.91 wr) %)_ (r).

Therefore, the total tons fuel oil required per year:

(Wey) = (U;) (8760) (.01 W) (_g) + (u,) (8760) (.91 W) (_;)_ (r) =

T971.6 (U, + U x) E =KWV = W

R R
vwhere K10 = 7971.6 (Uf + Urr) = "Ship Use Factor"™ and Pf =

total cost points for fuel oil required for one year's operation

- wfy x K5 P = Kiox wf XV X Ks

T =B

R

p i



C- 1.3'—"-{.

K11

Example:

For a conventional dry cergo ship, it is determined from a study of
its proposed service, speed, and cargo handling capability that it
will be at sea 55% of the time at a given fuel rate (see equation
no. 20), be operating in port at minimum power (1/24 normal fuel
rate) 35% of the time, and will have & "dead plant 104 of the time".
On this basis,

U, = 0.55, Ur = 0.35

t

r = 5% =0.0k2,  KLO = 4500

Cost of reserve fuel oil, which is encountered only once (during

first refueling), is considered negligible when emortized throughout

life of ship.

= GM/Beam Ratio, minimum scceptable limit. For comventional dry
cargo ships this will be taken equal to 0.05. For special type
ships, this value may be varied to evaluate its influence on
the "Optimum" ship characteristics. It should be noted that
the GM derived from this ratio will be for the ship in the

“"Full Load Departure Condition", and uncorrected for free

surface.



